File size: 7,664 Bytes
4275cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import math
import torch
import torch.nn as nn
from torch.nn import functional as F
from torch.distributions import Categorical
import models.pos_encoding as pos_encoding

class Text2Motion_Transformer(nn.Module):

    def __init__(self, 
                num_vq=1024, 
                embed_dim=512, 
                clip_dim=512, 
                block_size=16, 
                num_layers=2, 
                n_head=8, 
                drop_out_rate=0.1, 
                fc_rate=4):
        super().__init__()
        self.trans_base = CrossCondTransBase(num_vq, embed_dim, clip_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
        self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
        self.block_size = block_size
        self.num_vq = num_vq

    def get_block_size(self):
        return self.block_size

    def forward(self, idxs, clip_feature):
        feat = self.trans_base(idxs, clip_feature)
        logits = self.trans_head(feat)
        return logits

    def sample(self, clip_feature, if_categorial=False):
        for k in range(self.block_size):
            if k == 0:
                x = []
            else:
                x = xs
            logits = self.forward(x, clip_feature)
            logits = logits[:, -1, :]
            probs = F.softmax(logits, dim=-1)
            if if_categorial:
                dist = Categorical(probs)
                idx = dist.sample()
                if idx == self.num_vq:
                    break
                idx = idx.unsqueeze(-1)
            else:
                _, idx = torch.topk(probs, k=1, dim=-1)
                if idx[0] == self.num_vq:
                    break
            # append to the sequence and continue
            if k == 0:
                xs = idx
            else:
                xs = torch.cat((xs, idx), dim=1)
            
            if k == self.block_size - 1:
                return xs[:, :-1]
        return xs

class CausalCrossConditionalSelfAttention(nn.Module):

    def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
        super().__init__()
        assert embed_dim % 8 == 0
        # key, query, value projections for all heads
        self.key = nn.Linear(embed_dim, embed_dim)
        self.query = nn.Linear(embed_dim, embed_dim)
        self.value = nn.Linear(embed_dim, embed_dim)

        self.attn_drop = nn.Dropout(drop_out_rate)
        self.resid_drop = nn.Dropout(drop_out_rate)

        self.proj = nn.Linear(embed_dim, embed_dim)
        # causal mask to ensure that attention is only applied to the left in the input sequence
        self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
        self.n_head = n_head

    def forward(self, x):
        B, T, C = x.size() 

        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
        att = F.softmax(att, dim=-1)
        att = self.attn_drop(att)
        y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side

        # output projection
        y = self.resid_drop(self.proj(y))
        return y

class Block(nn.Module):

    def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4):
        super().__init__()
        self.ln1 = nn.LayerNorm(embed_dim)
        self.ln2 = nn.LayerNorm(embed_dim)
        self.attn = CausalCrossConditionalSelfAttention(embed_dim, block_size, n_head, drop_out_rate)
        self.mlp = nn.Sequential(
            nn.Linear(embed_dim, fc_rate * embed_dim),
            nn.GELU(),
            nn.Linear(fc_rate * embed_dim, embed_dim),
            nn.Dropout(drop_out_rate),
        )

    def forward(self, x):
        x = x + self.attn(self.ln1(x))
        x = x + self.mlp(self.ln2(x))
        return x

class CrossCondTransBase(nn.Module):

    def __init__(self, 
                num_vq=1024, 
                embed_dim=512, 
                clip_dim=512, 
                block_size=16, 
                num_layers=2, 
                n_head=8, 
                drop_out_rate=0.1, 
                fc_rate=4):
        super().__init__()
        self.tok_emb = nn.Embedding(num_vq + 2, embed_dim)
        self.cond_emb = nn.Linear(clip_dim, embed_dim)
        self.pos_embedding = nn.Embedding(block_size, embed_dim)
        self.drop = nn.Dropout(drop_out_rate)
        # transformer block
        self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
        self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)

        self.block_size = block_size

        self.apply(self._init_weights)

    def get_block_size(self):
        return self.block_size

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
    
    def forward(self, idx, clip_feature):
        if len(idx) == 0:
            token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
        else:
            b, t = idx.size()
            assert t <= self.block_size, "Cannot forward, model block size is exhausted."
            # forward the Trans model
            token_embeddings = self.tok_emb(idx)
            token_embeddings = torch.cat([self.cond_emb(clip_feature).unsqueeze(1), token_embeddings], dim=1)
            
        x = self.pos_embed(token_embeddings)
        x = self.blocks(x)

        return x


class CrossCondTransHead(nn.Module):

    def __init__(self, 
                num_vq=1024, 
                embed_dim=512, 
                block_size=16, 
                num_layers=2, 
                n_head=8, 
                drop_out_rate=0.1, 
                fc_rate=4):
        super().__init__()

        self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
        self.ln_f = nn.LayerNorm(embed_dim)
        self.head = nn.Linear(embed_dim, num_vq + 1, bias=False)
        self.block_size = block_size

        self.apply(self._init_weights)

    def get_block_size(self):
        return self.block_size

    def _init_weights(self, module):
        if isinstance(module, (nn.Linear, nn.Embedding)):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

    def forward(self, x):
        x = self.blocks(x)
        x = self.ln_f(x)
        logits = self.head(x)
        return logits