Spaces:
Sleeping
Sleeping
File size: 10,577 Bytes
8770e77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import sys
import os
import OpenGL.GL as gl
os.environ["PYOPENGL_PLATFORM"] = "egl"
sys.argv = ['VQ-Trans/GPT_eval_multi.py']
os.makedirs('output', exist_ok=True)
os.chdir('VQ-Trans')
os.makedirs('checkpoints', exist_ok=True)
os.system('gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view -O checkpoints')
os.system('gdown --fuzzy https://drive.google.com/file/d/1tX79xk0fflp07EZ660Xz1RAFE33iEyJR/view -O checkpoints')
os.system('unzip checkpoints/t2m.zip')
os.system('unzip checkpoints/kit.zip')
os.system('rm checkpoints/t2m.zip')
os.system('rm checkpoints/kit.zip')
sys.path.append('/home/user/app/VQ-Trans')
import options.option_transformer as option_trans
from huggingface_hub import snapshot_download
model_path = snapshot_download(repo_id="vumichien/T2M-GPT")
args = option_trans.get_args_parser()
args.dataname = 't2m'
args.resume_pth = f'{model_path}/VQVAE/net_last.pth'
args.resume_trans = f'{model_path}/VQTransformer_corruption05/net_best_fid.pth'
args.down_t = 2
args.depth = 3
args.block_size = 51
import clip
import torch
import numpy as np
import models.vqvae as vqvae
import models.t2m_trans as trans
from utils.motion_process import recover_from_ric
import visualization.plot_3d_global as plot_3d
from models.rotation2xyz import Rotation2xyz
import numpy as np
from trimesh import Trimesh
import gc
import torch
from visualize.simplify_loc2rot import joints2smpl
import pyrender
# import matplotlib.pyplot as plt
import io
import imageio
from shapely import geometry
import trimesh
from pyrender.constants import RenderFlags
import math
# import ffmpeg
# from PIL import Image
import hashlib
import gradio as gr
## load clip model and datasets
is_cuda = torch.cuda.is_available()
device = torch.device("cuda" if is_cuda else "cpu")
print(device)
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device, jit=False, download_root='./') # Must set jit=False for training
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
clip_model.eval()
for p in clip_model.parameters():
p.requires_grad = False
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
args.nb_code,
args.code_dim,
args.output_emb_width,
args.down_t,
args.stride_t,
args.width,
args.depth,
args.dilation_growth_rate)
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
embed_dim=1024,
clip_dim=args.clip_dim,
block_size=args.block_size,
num_layers=9,
n_head=16,
drop_out_rate=args.drop_out_rate,
fc_rate=args.ff_rate)
print('loading checkpoint from {}'.format(args.resume_pth))
ckpt = torch.load(args.resume_pth, map_location='cpu')
net.load_state_dict(ckpt['net'], strict=True)
net.eval()
print('loading transformer checkpoint from {}'.format(args.resume_trans))
ckpt = torch.load(args.resume_trans, map_location='cpu')
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
trans_encoder.eval()
mean = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/mean.npy'))
std = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/std.npy'))
if is_cuda:
net.cuda()
trans_encoder.cuda()
mean = mean.cuda()
std = std.cuda()
def render(motions, device_id=0, name='test_vis'):
frames, njoints, nfeats = motions.shape
MINS = motions.min(axis=0).min(axis=0)
MAXS = motions.max(axis=0).max(axis=0)
height_offset = MINS[1]
motions[:, :, 1] -= height_offset
trajec = motions[:, 0, [0, 2]]
is_cuda = torch.cuda.is_available()
# device = torch.device("cuda" if is_cuda else "cpu")
j2s = joints2smpl(num_frames=frames, device_id=0, cuda=is_cuda)
rot2xyz = Rotation2xyz(device=device)
faces = rot2xyz.smpl_model.faces
if not os.path.exists(f'output/{name}_pred.pt'):
print(f'Running SMPLify, it may take a few minutes.')
motion_tensor, opt_dict = j2s.joint2smpl(motions) # [nframes, njoints, 3]
vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None,
pose_rep='rot6d', translation=True, glob=True,
jointstype='vertices',
vertstrans=True)
vertices = vertices.detach().cpu()
torch.save(vertices, f'output/{name}_pred.pt')
else:
vertices = torch.load(f'output/{name}_pred.pt')
frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints
print(vertices.shape)
MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0]
MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0]
out_list = []
minx = MINS[0] - 0.5
maxx = MAXS[0] + 0.5
minz = MINS[2] - 0.5
maxz = MAXS[2] + 0.5
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5)
vid = []
for i in range(frames):
if i % 10 == 0:
print(i)
mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces)
base_color = (0.11, 0.53, 0.8, 0.5)
## OPAQUE rendering without alpha
## BLEND rendering consider alpha
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.7,
alphaMode='OPAQUE',
baseColorFactor=base_color
)
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
polygon_mesh.visual.face_colors = [0, 0, 0, 0.21]
polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False)
bg_color = [1, 1, 1, 0.8]
scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4))
sx, sy, tx, ty = [0.75, 0.75, 0, 0.10]
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))
light = pyrender.DirectionalLight(color=[1,1,1], intensity=300)
scene.add(mesh)
c = np.pi / 2
scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0],
[ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()],
[ 0, np.sin(c), np.cos(c), 0],
[ 0, 0, 0, 1]]))
light_pose = np.eye(4)
light_pose[:3, 3] = [0, -1, 1]
scene.add(light, pose=light_pose.copy())
light_pose[:3, 3] = [0, 1, 1]
scene.add(light, pose=light_pose.copy())
light_pose[:3, 3] = [1, 1, 2]
scene.add(light, pose=light_pose.copy())
c = -np.pi / 6
scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2],
[ 0, np.cos(c), -np.sin(c), 1.5],
[ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())],
[ 0, 0, 0, 1]
])
# render scene
r = pyrender.OffscreenRenderer(960, 960)
color, _ = r.render(scene, flags=RenderFlags.RGBA)
# Image.fromarray(color).save(outdir+'/'+name+'_'+str(i)+'.png')
vid.append(color)
r.delete()
out = np.stack(vid, axis=0)
imageio.mimwrite(f'output/results.gif', out, fps=20)
del out, vertices
return f'output/results.gif'
def predict(clip_text, method='fast'):
gc.collect()
if torch.cuda.is_available():
text = clip.tokenize([clip_text], truncate=True).cuda()
else:
text = clip.tokenize([clip_text], truncate=True)
feat_clip_text = clip_model.encode_text(text).float()
index_motion = trans_encoder.sample(feat_clip_text[0:1], False)
pred_pose = net.forward_decoder(index_motion)
pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22)
output_name = hashlib.md5(clip_text.encode()).hexdigest()
if method == 'fast':
xyz = pred_xyz.reshape(1, -1, 22, 3)
pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(), title_batch=None, outname=[f'output/results.gif'])
return f'output/results.gif'
elif method == 'slow':
output_path = render(pred_xyz.detach().cpu().numpy().squeeze(axis=0), device_id=0, name=output_name)
return output_path
# ---- Gradio Layout -----
text_prompt = gr.Textbox(label="Text prompt", lines=1, interactive=True)
video_out = gr.Video(label="Motion", mirror_webcam=False, interactive=False)
demo = gr.Blocks()
demo.encrypt = False
with demo:
gr.Markdown('''
<div>
<h1 style='text-align: center'>Generating Human Motion from Textual Descriptions with Discrete Representations (T2M-GPT)</h1>
This space uses <a href='https://mael-zys.github.io/T2M-GPT/' target='_blank'><b>T2M-GPT models</b></a> based on Vector Quantised-Variational AutoEncoder (VQ-VAE) and Generative Pre-trained Transformer (GPT) for human motion generation from textural descriptions🤗
</div>
''')
with gr.Row():
gr.Markdown('''
### Generate human motion by **T2M-GPT**
##### Step 1. Give prompt text describing human motion
##### Step 2. Choice method to generate output (Fast: Sketch skeleton; Slow: SMPL mesh)
##### Step 3. Generate output and enjoy
''')
with gr.Row():
gr.Markdown('''
### You can test by following examples:
''')
examples = gr.Examples(examples=
[ "a person jogs in place, slowly at first, then increases speed. they then back up and squat down.",
"a man steps forward and does a handstand",
"a man rises from the ground, walks in a circle and sits back down on the ground"],
label="Examples", inputs=[text_prompt])
with gr.Column():
with gr.Row():
text_prompt.render()
method = gr.Dropdown(["slow", "fast"], label="Method", value="fast")
with gr.Row():
generate_btn = gr.Button("Generate")
generate_btn.click(predict, [text_prompt, method], [video_out])
print(video_out)
with gr.Row():
video_out.render()
demo.launch(debug=True)
|