Spaces:
Running
on
T4
Running
on
T4
File size: 12,864 Bytes
4275cae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# Copyright (c) 2018-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import torch
import numpy as np
_EPS4 = np.finfo(float).eps * 4.0
_FLOAT_EPS = np.finfo(np.float).eps
# PyTorch-backed implementations
def qinv(q):
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
mask = torch.ones_like(q)
mask[..., 1:] = -mask[..., 1:]
return q * mask
def qinv_np(q):
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
return qinv(torch.from_numpy(q).float()).numpy()
def qnormalize(q):
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
return q / torch.norm(q, dim=-1, keepdim=True)
def qmul(q, r):
"""
Multiply quaternion(s) q with quaternion(s) r.
Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions.
Returns q*r as a tensor of shape (*, 4).
"""
assert q.shape[-1] == 4
assert r.shape[-1] == 4
original_shape = q.shape
# Compute outer product
terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4))
w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3]
x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2]
y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1]
z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0]
return torch.stack((w, x, y, z), dim=1).view(original_shape)
def qrot(q, v):
"""
Rotate vector(s) v about the rotation described by quaternion(s) q.
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
where * denotes any number of dimensions.
Returns a tensor of shape (*, 3).
"""
assert q.shape[-1] == 4
assert v.shape[-1] == 3
assert q.shape[:-1] == v.shape[:-1]
original_shape = list(v.shape)
# print(q.shape)
q = q.contiguous().view(-1, 4)
v = v.contiguous().view(-1, 3)
qvec = q[:, 1:]
uv = torch.cross(qvec, v, dim=1)
uuv = torch.cross(qvec, uv, dim=1)
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape)
def qeuler(q, order, epsilon=0, deg=True):
"""
Convert quaternion(s) q to Euler angles.
Expects a tensor of shape (*, 4), where * denotes any number of dimensions.
Returns a tensor of shape (*, 3).
"""
assert q.shape[-1] == 4
original_shape = list(q.shape)
original_shape[-1] = 3
q = q.view(-1, 4)
q0 = q[:, 0]
q1 = q[:, 1]
q2 = q[:, 2]
q3 = q[:, 3]
if order == 'xyz':
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon))
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
elif order == 'yzx':
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon))
elif order == 'zxy':
x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon))
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3))
elif order == 'xzy':
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon))
elif order == 'yxz':
x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon))
y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2))
z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
elif order == 'zyx':
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon))
z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
else:
raise
if deg:
return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi
else:
return torch.stack((x, y, z), dim=1).view(original_shape)
# Numpy-backed implementations
def qmul_np(q, r):
q = torch.from_numpy(q).contiguous().float()
r = torch.from_numpy(r).contiguous().float()
return qmul(q, r).numpy()
def qrot_np(q, v):
q = torch.from_numpy(q).contiguous().float()
v = torch.from_numpy(v).contiguous().float()
return qrot(q, v).numpy()
def qeuler_np(q, order, epsilon=0, use_gpu=False):
if use_gpu:
q = torch.from_numpy(q).cuda().float()
return qeuler(q, order, epsilon).cpu().numpy()
else:
q = torch.from_numpy(q).contiguous().float()
return qeuler(q, order, epsilon).numpy()
def qfix(q):
"""
Enforce quaternion continuity across the time dimension by selecting
the representation (q or -q) with minimal distance (or, equivalently, maximal dot product)
between two consecutive frames.
Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints.
Returns a tensor of the same shape.
"""
assert len(q.shape) == 3
assert q.shape[-1] == 4
result = q.copy()
dot_products = np.sum(q[1:] * q[:-1], axis=2)
mask = dot_products < 0
mask = (np.cumsum(mask, axis=0) % 2).astype(bool)
result[1:][mask] *= -1
return result
def euler2quat(e, order, deg=True):
"""
Convert Euler angles to quaternions.
"""
assert e.shape[-1] == 3
original_shape = list(e.shape)
original_shape[-1] = 4
e = e.view(-1, 3)
## if euler angles in degrees
if deg:
e = e * np.pi / 180.
x = e[:, 0]
y = e[:, 1]
z = e[:, 2]
rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1)
ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1)
rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1)
result = None
for coord in order:
if coord == 'x':
r = rx
elif coord == 'y':
r = ry
elif coord == 'z':
r = rz
else:
raise
if result is None:
result = r
else:
result = qmul(result, r)
# Reverse antipodal representation to have a non-negative "w"
if order in ['xyz', 'yzx', 'zxy']:
result *= -1
return result.view(original_shape)
def expmap_to_quaternion(e):
"""
Convert axis-angle rotations (aka exponential maps) to quaternions.
Stable formula from "Practical Parameterization of Rotations Using the Exponential Map".
Expects a tensor of shape (*, 3), where * denotes any number of dimensions.
Returns a tensor of shape (*, 4).
"""
assert e.shape[-1] == 3
original_shape = list(e.shape)
original_shape[-1] = 4
e = e.reshape(-1, 3)
theta = np.linalg.norm(e, axis=1).reshape(-1, 1)
w = np.cos(0.5 * theta).reshape(-1, 1)
xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e
return np.concatenate((w, xyz), axis=1).reshape(original_shape)
def euler_to_quaternion(e, order):
"""
Convert Euler angles to quaternions.
"""
assert e.shape[-1] == 3
original_shape = list(e.shape)
original_shape[-1] = 4
e = e.reshape(-1, 3)
x = e[:, 0]
y = e[:, 1]
z = e[:, 2]
rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1)
ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1)
rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1)
result = None
for coord in order:
if coord == 'x':
r = rx
elif coord == 'y':
r = ry
elif coord == 'z':
r = rz
else:
raise
if result is None:
result = r
else:
result = qmul_np(result, r)
# Reverse antipodal representation to have a non-negative "w"
if order in ['xyz', 'yzx', 'zxy']:
result *= -1
return result.reshape(original_shape)
def quaternion_to_matrix(quaternions):
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def quaternion_to_matrix_np(quaternions):
q = torch.from_numpy(quaternions).contiguous().float()
return quaternion_to_matrix(q).numpy()
def quaternion_to_cont6d_np(quaternions):
rotation_mat = quaternion_to_matrix_np(quaternions)
cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1)
return cont_6d
def quaternion_to_cont6d(quaternions):
rotation_mat = quaternion_to_matrix(quaternions)
cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1)
return cont_6d
def cont6d_to_matrix(cont6d):
assert cont6d.shape[-1] == 6, "The last dimension must be 6"
x_raw = cont6d[..., 0:3]
y_raw = cont6d[..., 3:6]
x = x_raw / torch.norm(x_raw, dim=-1, keepdim=True)
z = torch.cross(x, y_raw, dim=-1)
z = z / torch.norm(z, dim=-1, keepdim=True)
y = torch.cross(z, x, dim=-1)
x = x[..., None]
y = y[..., None]
z = z[..., None]
mat = torch.cat([x, y, z], dim=-1)
return mat
def cont6d_to_matrix_np(cont6d):
q = torch.from_numpy(cont6d).contiguous().float()
return cont6d_to_matrix(q).numpy()
def qpow(q0, t, dtype=torch.float):
''' q0 : tensor of quaternions
t: tensor of powers
'''
q0 = qnormalize(q0)
theta0 = torch.acos(q0[..., 0])
## if theta0 is close to zero, add epsilon to avoid NaNs
mask = (theta0 <= 10e-10) * (theta0 >= -10e-10)
theta0 = (1 - mask) * theta0 + mask * 10e-10
v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1)
if isinstance(t, torch.Tensor):
q = torch.zeros(t.shape + q0.shape)
theta = t.view(-1, 1) * theta0.view(1, -1)
else: ## if t is a number
q = torch.zeros(q0.shape)
theta = t * theta0
q[..., 0] = torch.cos(theta)
q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1)
return q.to(dtype)
def qslerp(q0, q1, t):
'''
q0: starting quaternion
q1: ending quaternion
t: array of points along the way
Returns:
Tensor of Slerps: t.shape + q0.shape
'''
q0 = qnormalize(q0)
q1 = qnormalize(q1)
q_ = qpow(qmul(q1, qinv(q0)), t)
return qmul(q_,
q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous())
def qbetween(v0, v1):
'''
find the quaternion used to rotate v0 to v1
'''
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
v = torch.cross(v0, v1)
w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1,
keepdim=True)
return qnormalize(torch.cat([w, v], dim=-1))
def qbetween_np(v0, v1):
'''
find the quaternion used to rotate v0 to v1
'''
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
v0 = torch.from_numpy(v0).float()
v1 = torch.from_numpy(v1).float()
return qbetween(v0, v1).numpy()
def lerp(p0, p1, t):
if not isinstance(t, torch.Tensor):
t = torch.Tensor([t])
new_shape = t.shape + p0.shape
new_view_t = t.shape + torch.Size([1] * len(p0.shape))
new_view_p = torch.Size([1] * len(t.shape)) + p0.shape
p0 = p0.view(new_view_p).expand(new_shape)
p1 = p1.view(new_view_p).expand(new_shape)
t = t.view(new_view_t).expand(new_shape)
return p0 + t * (p1 - p0)
|