File size: 8,935 Bytes
4275cae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn.functional as F
from visualize.joints2smpl.src import config

# Guassian
def gmof(x, sigma):
    """
    Geman-McClure error function
    """
    x_squared = x ** 2
    sigma_squared = sigma ** 2
    return (sigma_squared * x_squared) / (sigma_squared + x_squared)

# angle prior
def angle_prior(pose):
    """
    Angle prior that penalizes unnatural bending of the knees and elbows
    """
    # We subtract 3 because pose does not include the global rotation of the model
    return torch.exp(
        pose[:, [55 - 3, 58 - 3, 12 - 3, 15 - 3]] * torch.tensor([1., -1., -1, -1.], device=pose.device)) ** 2


def perspective_projection(points, rotation, translation,
                           focal_length, camera_center):
    """
    This function computes the perspective projection of a set of points.
    Input:
        points (bs, N, 3): 3D points
        rotation (bs, 3, 3): Camera rotation
        translation (bs, 3): Camera translation
        focal_length (bs,) or scalar: Focal length
        camera_center (bs, 2): Camera center
    """
    batch_size = points.shape[0]
    K = torch.zeros([batch_size, 3, 3], device=points.device)
    K[:, 0, 0] = focal_length
    K[:, 1, 1] = focal_length
    K[:, 2, 2] = 1.
    K[:, :-1, -1] = camera_center

    # Transform points
    points = torch.einsum('bij,bkj->bki', rotation, points)
    points = points + translation.unsqueeze(1)

    # Apply perspective distortion
    projected_points = points / points[:, :, -1].unsqueeze(-1)

    # Apply camera intrinsics
    projected_points = torch.einsum('bij,bkj->bki', K, projected_points)

    return projected_points[:, :, :-1]


def body_fitting_loss(body_pose, betas, model_joints, camera_t, camera_center,
                      joints_2d, joints_conf, pose_prior,
                      focal_length=5000, sigma=100, pose_prior_weight=4.78,
                      shape_prior_weight=5, angle_prior_weight=15.2,
                      output='sum'):
    """
    Loss function for body fitting
    """
    batch_size = body_pose.shape[0]
    rotation = torch.eye(3, device=body_pose.device).unsqueeze(0).expand(batch_size, -1, -1)

    projected_joints = perspective_projection(model_joints, rotation, camera_t,
                                              focal_length, camera_center)

    # Weighted robust reprojection error
    reprojection_error = gmof(projected_joints - joints_2d, sigma)
    reprojection_loss = (joints_conf ** 2) * reprojection_error.sum(dim=-1)

    # Pose prior loss
    pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas)

    # Angle prior for knees and elbows
    angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1)

    # Regularizer to prevent betas from taking large values
    shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1)

    total_loss = reprojection_loss.sum(dim=-1) + pose_prior_loss + angle_prior_loss + shape_prior_loss

    if output == 'sum':
        return total_loss.sum()
    elif output == 'reprojection':
        return reprojection_loss


# --- get camera fitting loss -----
def camera_fitting_loss(model_joints, camera_t, camera_t_est, camera_center, 
                        joints_2d, joints_conf,
                        focal_length=5000, depth_loss_weight=100):
    """
    Loss function for camera optimization.
    """
    # Project model joints
    batch_size = model_joints.shape[0]
    rotation = torch.eye(3, device=model_joints.device).unsqueeze(0).expand(batch_size, -1, -1)
    projected_joints = perspective_projection(model_joints, rotation, camera_t,
                                              focal_length, camera_center)

    # get the indexed four
    op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder']
    op_joints_ind = [config.JOINT_MAP[joint] for joint in op_joints]
    gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
    gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]

    reprojection_error_op = (joints_2d[:, op_joints_ind] -
                             projected_joints[:, op_joints_ind]) ** 2
    reprojection_error_gt = (joints_2d[:, gt_joints_ind] -
                             projected_joints[:, gt_joints_ind]) ** 2

    # Check if for each example in the batch all 4 OpenPose detections are valid, otherwise use the GT detections
    # OpenPose joints are more reliable for this task, so we prefer to use them if possible
    is_valid = (joints_conf[:, op_joints_ind].min(dim=-1)[0][:, None, None] > 0).float()
    reprojection_loss = (is_valid * reprojection_error_op + (1 - is_valid) * reprojection_error_gt).sum(dim=(1, 2))

    # Loss that penalizes deviation from depth estimate
    depth_loss = (depth_loss_weight ** 2) * (camera_t[:, 2] - camera_t_est[:, 2]) ** 2

    total_loss = reprojection_loss + depth_loss
    return total_loss.sum()



 # #####--- body fitiing loss -----
def body_fitting_loss_3d(body_pose, preserve_pose,
                         betas, model_joints, camera_translation,
                         j3d, pose_prior,
                         joints3d_conf,
                         sigma=100, pose_prior_weight=4.78*1.5,
                         shape_prior_weight=5.0, angle_prior_weight=15.2,
                         joint_loss_weight=500.0,
                         pose_preserve_weight=0.0,
                         use_collision=False,
                         model_vertices=None, model_faces=None,
                         search_tree=None,  pen_distance=None,  filter_faces=None,
                         collision_loss_weight=1000
                         ):
    """
    Loss function for body fitting
    """
    batch_size = body_pose.shape[0]

    #joint3d_loss = (joint_loss_weight ** 2) * gmof((model_joints + camera_translation) - j3d, sigma).sum(dim=-1)
    
    joint3d_error = gmof((model_joints + camera_translation) - j3d, sigma)
    
    joint3d_loss_part = (joints3d_conf ** 2) * joint3d_error.sum(dim=-1)
    joint3d_loss = ((joint_loss_weight ** 2) * joint3d_loss_part).sum(dim=-1)
    
    # Pose prior loss
    pose_prior_loss = (pose_prior_weight ** 2) * pose_prior(body_pose, betas)
    # Angle prior for knees and elbows
    angle_prior_loss = (angle_prior_weight ** 2) * angle_prior(body_pose).sum(dim=-1)
    # Regularizer to prevent betas from taking large values
    shape_prior_loss = (shape_prior_weight ** 2) * (betas ** 2).sum(dim=-1)

    collision_loss = 0.0
    # Calculate the loss due to interpenetration
    if use_collision:
        triangles = torch.index_select(
            model_vertices, 1,
            model_faces).view(batch_size, -1, 3, 3)

        with torch.no_grad():
            collision_idxs = search_tree(triangles)

        # Remove unwanted collisions
        if filter_faces is not None:
            collision_idxs = filter_faces(collision_idxs)

        if collision_idxs.ge(0).sum().item() > 0:
            collision_loss = torch.sum(collision_loss_weight * pen_distance(triangles, collision_idxs))
    
    pose_preserve_loss = (pose_preserve_weight ** 2) * ((body_pose - preserve_pose) ** 2).sum(dim=-1)

    # print('joint3d_loss', joint3d_loss.shape)
    # print('pose_prior_loss', pose_prior_loss.shape)
    # print('angle_prior_loss', angle_prior_loss.shape)
    # print('shape_prior_loss', shape_prior_loss.shape)
    # print('collision_loss', collision_loss)
    # print('pose_preserve_loss', pose_preserve_loss.shape)

    total_loss = joint3d_loss + pose_prior_loss + angle_prior_loss + shape_prior_loss + collision_loss + pose_preserve_loss

    return total_loss.sum()


# #####--- get camera fitting loss -----
def camera_fitting_loss_3d(model_joints, camera_t, camera_t_est,
                           j3d, joints_category="orig", depth_loss_weight=100.0):
    """
    Loss function for camera optimization.
    """
    model_joints = model_joints + camera_t
    # # get the indexed four
    # op_joints = ['OP RHip', 'OP LHip', 'OP RShoulder', 'OP LShoulder']
    # op_joints_ind = [config.JOINT_MAP[joint] for joint in op_joints]
    #
    # j3d_error_loss = (j3d[:, op_joints_ind] -
    #                          model_joints[:, op_joints_ind]) ** 2

    gt_joints = ['RHip', 'LHip', 'RShoulder', 'LShoulder']
    gt_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
    
    if joints_category=="orig":
        select_joints_ind = [config.JOINT_MAP[joint] for joint in gt_joints]
    elif joints_category=="AMASS":
        select_joints_ind = [config.AMASS_JOINT_MAP[joint] for joint in gt_joints]
    else:
        print("NO SUCH JOINTS CATEGORY!")

    j3d_error_loss = (j3d[:, select_joints_ind] -
                      model_joints[:, gt_joints_ind]) ** 2

    # Loss that penalizes deviation from depth estimate
    depth_loss = (depth_loss_weight**2) *  (camera_t - camera_t_est)**2

    total_loss = j3d_error_loss +  depth_loss
    return total_loss.sum()