File size: 45,685 Bytes
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
 
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
784bcfa
df1e54c
784bcfa
 
df1e54c
784bcfa
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
784bcfa
df1e54c
784bcfa
 
 
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
035316e
 
784bcfa
df1e54c
 
 
 
 
 
 
 
 
 
 
 
035316e
 
 
 
 
 
 
 
df1e54c
 
035316e
 
 
df1e54c
 
 
 
 
 
 
 
 
 
 
035316e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
 
 
 
035316e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035316e
df1e54c
 
035316e
 
 
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035316e
df1e54c
035316e
df1e54c
035316e
 
 
 
 
 
 
 
784bcfa
035316e
784bcfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
035316e
 
 
 
 
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
 
035316e
df1e54c
 
 
 
 
 
035316e
784bcfa
 
 
035316e
 
 
 
 
 
 
 
 
 
 
 
 
df1e54c
 
035316e
df1e54c
 
035316e
784bcfa
 
 
 
 
 
 
 
035316e
df1e54c
 
 
035316e
 
 
 
 
 
 
 
 
 
784bcfa
 
035316e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
035316e
784bcfa
035316e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784bcfa
035316e
784bcfa
035316e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1e54c
 
035316e
 
 
 
784bcfa
035316e
 
 
 
 
784bcfa
035316e
 
 
 
 
784bcfa
035316e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1e54c
 
 
 
 
 
 
 
 
 
 
 
784bcfa
df1e54c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
"""

HealthBot: An AI-Powered Patient Education System



This module implements a LangGraph workflow for a healthcare chatbot that can:

1. Ask patients about health topics they want to learn about

2. Search for information using Tavily

3. Summarize the information in patient-friendly language

4. Create and grade comprehension quizzes

5. Provide feedback and suggestions for related topics



The implementation includes a Gradio UI for easy interaction.

"""

import os
from typing import TypedDict, List, Dict, Any, Optional, Literal
from dotenv import load_dotenv

# LangChain and LangGraph imports
from langgraph.graph import StateGraph, START, END
from langchain_core.messages import HumanMessage, SystemMessage, AIMessage
from langchain_openai import ChatOpenAI
from langchain_community.tools.tavily_search import TavilySearchResults

# Gradio for UI
import gradio as gr

# Load environment variables
load_dotenv()

# Initialize the language model
llm = ChatOpenAI(
    model="gpt-4.1",
    temperature=0.0,
)

# Initialize the Tavily search tool
search_tool = TavilySearchResults(max_results=5)

# Define the state schema
class HealthBotState(TypedDict):
    # User inputs
    health_topic: Optional[str]
    quiz_ready: Optional[bool]
    quiz_answer: Optional[str]
    next_action: Optional[Literal["new_topic", "exit", "more_questions"]]
    difficulty: Optional[Literal["easy", "medium", "hard"]]
    level_of_details: Optional[Literal["easy", "medium", "hard"]]  # For summarization
    num_questions: Optional[int]
    current_question_index: Optional[int]

    # System outputs
    search_results: Optional[List[Dict[str, Any]]]
    summary: Optional[str]
    quiz_questions: Optional[List[str]]
    current_quiz_question: Optional[str]
    quiz_grade: Optional[str]
    quiz_feedback: Optional[str]
    quiz_grades: Optional[List[str]]  # Store grades for all questions
    related_topics: Optional[List[str]]

    # Messages for the conversation
    messages: List[Dict[str, Any]]

# Define the nodes for the workflow


def ask_health_topic(state: HealthBotState) -> HealthBotState:
    """Ask the patient what health topic they'd like to learn about."""
    # If this is a new conversation or the user wants to learn about a new topic
    if state.get("health_topic") is None or state.get("next_action") == "new_topic":
        # Reset the state for a new topic
        if state.get("next_action") == "new_topic":
            state = HealthBotState(messages=state.get("messages", []))

        # Add system message to the conversation
        if not state.get("messages"):
            state["messages"] = [
                {
                    "role": "system",
                    "content": "You are HealthBot, an AI assistant that helps patients learn about health topics."
                }
            ]

        # Add the question to the conversation
        state["messages"].append({
            "role": "assistant",
            "content": "What health topic or medical condition would you like to learn about today?"
        })

        # This question now appears automatically as the first message when opening the Gradio UI

        # Get user input
        health_topic = input("HealthBot: What health topic or medical condition would you like to learn about today? ")

        # Add user response to the conversation
        state["messages"].append({
            "role": "user",
            "content": health_topic
        })

        # Update the state
        state["health_topic"] = health_topic

        # Ask for difficulty level
        state["messages"].append({
            "role": "assistant",
            "content": "What level of detail would you like? (easy, medium, hard)"
        })

        difficulty = input("HealthBot: What level of detail would you like? (easy, medium, hard) ")

        # Add user response to the conversation
        state["messages"].append({
            "role": "user",
            "content": difficulty
        })

        # Update the state
        state["difficulty"] = difficulty
        state["level_of_details"] = difficulty  # Set level_of_details from difficulty

    return state

def search_health_info(state: HealthBotState) -> HealthBotState:
    """Search for health information using Tavily."""
    health_topic = state["health_topic"]
    level_of_details = state.get("level_of_details", state.get("difficulty", "medium"))

    # Construct the search query based on level_of_details
    if level_of_details == "easy":
        query = f"{health_topic} simple explanation for patients"
    elif level_of_details == "hard":
        query = f"{health_topic} detailed medical information"
    else:  # medium
        query = f"{health_topic} patient information"

    # Search for information
    search_results = search_tool.invoke(query)

    # Update the state
    state["search_results"] = search_results

    return state

def summarize_health_info(state: HealthBotState) -> HealthBotState:
    """Summarize the health information in patient-friendly language."""
    search_results = state["search_results"]
    health_topic = state["health_topic"]
    level_of_details = state.get("level_of_details", state.get("difficulty", "medium"))

    # Create a prompt for the LLM to summarize the information
    prompt = f"""

    You are a healthcare educator explaining {health_topic} to a patient.



    Based on the following search results, create a {level_of_details} level summary about {health_topic}.



    If the level is 'easy', use simple language, avoid medical jargon, and keep it brief (2-3 paragraphs).

    If the level is 'medium', use moderately complex language and provide more details (3-4 paragraphs).

    If the level is 'hard', use more technical language and provide comprehensive information (4-5 paragraphs).



    Search Results:

    {search_results}



    Your summary should be informative, accurate, and helpful for a patient trying to understand this health topic.

    Include important facts, symptoms, treatments, and preventive measures when applicable.

    """

    # Generate the summary
    messages = [
        SystemMessage(content="You are a healthcare educator explaining medical topics to patients."),
        HumanMessage(content=prompt)
    ]
    response = llm.invoke(messages)

    # Update the state
    state["summary"] = response.content

    # Add the summary to the conversation
    state["messages"].append({
        "role": "assistant",
        "content": response.content
    })

    return state

def present_summary(state: HealthBotState) -> HealthBotState:
    """Present the summary to the patient."""
    summary = state["summary"]

    # Print the summary
    print(f"HealthBot: Here's what I found about {state['health_topic']}:\n")
    print(summary)
    print("\n")

    return state

def prompt_for_quiz(state: HealthBotState) -> HealthBotState:
    """Ask if the patient is ready for a comprehension check."""
    # Add the question to the conversation
    state["messages"].append({
        "role": "assistant",
        "content": "Would you like to take a quick quiz to test your understanding? (yes/no)"
    })

    # Get user input
    response = input("HealthBot: Would you like to take a quick quiz to test your understanding? (yes/no) ")

    # Add user response to the conversation
    state["messages"].append({
        "role": "user",
        "content": response
    })

    # Update the state
    state["quiz_ready"] = response.lower() in ["yes", "y", "sure", "ok", "okay"]

    if state["quiz_ready"]:
        # Ask for number of questions
        state["messages"].append({
            "role": "assistant",
            "content": "How many questions would you like? (1-5)"
        })

        num_questions = input("HealthBot: How many questions would you like? (1-5) ")

        # Add user response to the conversation
        state["messages"].append({
            "role": "user",
            "content": num_questions
        })

        # Update the state
        try:
            state["num_questions"] = min(5, max(1, int(num_questions)))
        except ValueError:
            state["num_questions"] = 1
            print("HealthBot: I'll ask you 1 question.")

        state["current_question_index"] = 0

    return state

def create_quiz_questions(state: HealthBotState) -> HealthBotState:
    """Create quiz questions based on the health information summary."""
    if not state["quiz_ready"]:
        return state

    summary = state["summary"]
    health_topic = state["health_topic"]
    difficulty = state.get("difficulty", "medium")
    num_questions = state.get("num_questions", 1)

    # Create a prompt for the LLM to generate quiz questions
    prompt = f"""

    Based on the following summary about {health_topic}, create {num_questions} quiz question(s) to test the patient's understanding.



    Summary:

    {summary}



    If the difficulty is 'easy', create straightforward questions with clear answers from the summary.

    If the difficulty is 'medium', create questions that require some synthesis of information.

    If the difficulty is 'hard', create questions that require deeper understanding and application of concepts.



    Format your response as a JSON array of strings, with each string being a question.

    """

    # Generate the quiz questions
    messages = [
        SystemMessage(content="You are creating quiz questions to test patient understanding of medical topics."),
        HumanMessage(content=prompt)
    ]
    response = llm.invoke(messages)

    # Parse the response to extract the questions
    # This is a simple approach; in a production system, you'd want more robust parsing
    import json
    try:
        questions_text = response.content
        # Find the JSON array in the response
        start_idx = questions_text.find('[')
        end_idx = questions_text.rfind(']') + 1
        if start_idx >= 0 and end_idx > start_idx:
            questions_json = questions_text[start_idx:end_idx]
            questions = json.loads(questions_json)
        else:
            # Fallback if JSON parsing fails
            questions = [questions_text]
    except:
        # Fallback if JSON parsing fails
        questions = [response.content]

    # Update the state
    state["quiz_questions"] = questions
    state["current_quiz_question"] = questions[0]

    return state

def present_quiz_question(state: HealthBotState) -> HealthBotState:
    """Present a quiz question to the patient."""
    if not state["quiz_ready"]:
        return state

    current_index = state.get("current_question_index", 0)
    questions = state["quiz_questions"]

    if current_index < len(questions):
        current_question = questions[current_index]

        # Add the question to the conversation
        state["messages"].append({
            "role": "assistant",
            "content": f"Question {current_index + 1}: {current_question}"
        })

        # Print the question
        print(f"HealthBot: Question {current_index + 1}: {current_question}")

        # Update the state
        state["current_quiz_question"] = current_question

    return state

def collect_quiz_answer(state: HealthBotState) -> HealthBotState:
    """Collect the patient's answer to the quiz question."""
    if not state["quiz_ready"]:
        return state

    # Get user input
    answer = input("Your answer: ")

    # Add user response to the conversation
    state["messages"].append({
        "role": "user",
        "content": answer
    })

    # Update the state
    state["quiz_answer"] = answer

    return state

def grade_quiz_answer(state: HealthBotState) -> HealthBotState:
    """Grade the patient's answer to the quiz question."""
    if not state["quiz_ready"]:
        return state

    question = state["current_quiz_question"]
    answer = state["quiz_answer"]
    summary = state["summary"]

    # Create a prompt for the LLM to grade the answer
    prompt = f"""

    Grade the patient's answer to the following question about the health topic.



    Question: {question}



    Patient's Answer: {answer}



    Information from the summary:

    {summary}



    Provide a grade 'Pass' or 'Fail' and detailed feedback explaining why the answer received that grade.

    Include specific information from the summary that supports or contradicts the patient's answer.

    Be encouraging and educational in your feedback.



    Format your response as markdown text:

    - Grade: [text values of 'Pass' or 'Fail' only]

    - Feedback: [detailed feedback with citations from the summary. The text should be in markdown bullets and always nested under the bullet Feedback.]

    """

    # Generate the grade and feedback
    messages = [
        SystemMessage(content="You are grading a patient's understanding of a health topic."),
        HumanMessage(content=prompt)
    ]
    response = llm.invoke(messages)

    # Update the state
    state["quiz_grade"] = response.content

    # Initialize quiz_grades if it doesn't exist
    if "quiz_grades" not in state or state["quiz_grades"] is None:
        state["quiz_grades"] = []

    # Store the question and grade together in the quiz_grades list
    state["quiz_grades"].append({
        "question": question,
        "grade": response.content
    })

    # We don't add the grade to the conversation messages yet
    # It will be added in present_feedback after all questions are answered

    return state

def present_feedback(state: HealthBotState) -> HealthBotState:
    """Present the grade and feedback to the patient."""
    if not state["quiz_ready"]:
        return state

    # Check if there are more questions
    current_index = state.get("current_question_index", 0)
    num_questions = state.get("num_questions", 1)

    # If this is the last question or user has completed all questions
    if current_index >= num_questions - 1:
        # Calculate and present the total grade
        quiz_grades = state.get("quiz_grades", [])

        # Create a summary of all questions and grades
        summary = "Quiz Results:\n\n"

        # Add each question and its grade
        for i, grade_item in enumerate(quiz_grades):
            summary += f"Question {i+1}: {grade_item['question']}\n\n"

            # Parse the grade string to extract just the grade and feedback
            grade_str = grade_item['grade']

            # Check if the grade is in dictionary-like format
            if isinstance(grade_item, dict) and 'grade' in grade_item:
                # Extract just the markdown text of the grade
                summary += f"{grade_item['grade']}\n\n"
            elif grade_str.startswith('{') and "grade" in grade_str:
                try:
                    # Try to evaluate the string as a dictionary
                    import ast
                    grade_dict = ast.literal_eval(grade_str)
                    if isinstance(grade_dict, dict) and 'grade' in grade_dict:
                        # Extract just the grade value
                        summary += f"{grade_dict['grade']}\n\n"
                    else:
                        # Fallback to original string if not properly formatted
                        summary += f"{grade_str}\n\n"
                except:
                    # Fallback to original string if evaluation fails
                    summary += f"{grade_str}\n\n"
            else:
                # If not in dictionary format, use as is
                summary += f"{grade_str}\n\n"

        # Add a final summary line
        summary += f"You've completed all {num_questions} questions! Thank you for testing your knowledge."

        # Add the summary to the conversation
        state["messages"].append({
            "role": "assistant",
            "content": summary
        })

        # Print the summary
        print(f"HealthBot: {summary}")

    else:
        # Increment the question index
        state["current_question_index"] = current_index + 1

        # Ask if they want to continue to the next question
        state["messages"].append({
            "role": "assistant",
            "content": "Ready for the next question? (yes/no)"
        })

        response = input("HealthBot: Ready for the next question? (yes/no) ")

        # Add user response to the conversation
        state["messages"].append({
            "role": "user",
            "content": response
        })

        if response.lower() not in ["yes", "y", "sure", "ok", "okay"]:
            # Skip remaining questions and show the results for the questions answered
            state["current_question_index"] = num_questions

            # Recursively call present_feedback to show the results
            state = present_feedback(state)

    return state

def suggest_related_topics(state: HealthBotState) -> HealthBotState:
    """Suggest related health topics based on the current topic."""
    health_topic = state["health_topic"]
    summary = state["summary"]

    # Create a prompt for the LLM to suggest related topics
    prompt = f"""

    Based on the patient's interest in {health_topic} and the summary provided, suggest 3 related health topics that the patient might want to learn about next.



    Summary:

    {summary}



    Format your response as a JSON array of strings, with each string being a related topic.

    """

    # Generate the related topics
    messages = [
        SystemMessage(content="You are suggesting related health topics to a patient."),
        HumanMessage(content=prompt)
    ]
    response = llm.invoke(messages)

    # Parse the response to extract the related topics
    import json
    try:
        topics_text = response.content
        # Find the JSON array in the response
        start_idx = topics_text.find('[')
        end_idx = topics_text.rfind(']') + 1
        if start_idx >= 0 and end_idx > start_idx:
            topics_json = topics_text[start_idx:end_idx]
            topics = json.loads(topics_json)
        else:
            # Fallback if JSON parsing fails
            topics = ["Related topic 1", "Related topic 2", "Related topic 3"]
    except:
        # Fallback if JSON parsing fails
        topics = ["Related topic 1", "Related topic 2", "Related topic 3"]

    # Update the state
    state["related_topics"] = topics

    # Add the suggestions to the conversation
    suggestion_text = "You might also be interested in these related topics:\n"
    for i, topic in enumerate(topics):
        suggestion_text += f"{i+1}. {topic}\n"

    state["messages"].append({
        "role": "assistant",
        "content": suggestion_text
    })

    # Print the suggestions
    print(f"HealthBot: {suggestion_text}")

    return state

def ask_next_action(state: HealthBotState) -> HealthBotState:
    """Ask the patient if they'd like to learn about a new topic or exit."""
    # Add the question to the conversation
    related_topics = state.get("related_topics", [])

    if related_topics:
        prompt = "Would you like to:\n1. Learn about one of these related topics (enter the number)\n2. Learn about a new health topic (enter 'new')\n3. Exit (enter 'exit')"
    else:
        prompt = "Would you like to learn about a new health topic (enter 'new') or exit (enter 'exit')?"

    state["messages"].append({
        "role": "assistant",
        "content": prompt
    })

    # Get user input
    response = input(f"HealthBot: {prompt} ")

    # Add user response to the conversation
    state["messages"].append({
        "role": "user",
        "content": response
    })

    # Update the state
    if response.lower() in ["exit", "quit", "bye", "goodbye"]:
        state["next_action"] = "exit"
    elif response.lower() in ["new", "new topic"]:
        state["next_action"] = "new_topic"
    elif related_topics and response.isdigit() and 1 <= int(response) <= len(related_topics):
        # User selected a related topic
        selected_topic = related_topics[int(response) - 1]
        state["health_topic"] = selected_topic
        state["next_action"] = "new_topic"
    else:
        # Default to new topic
        state["next_action"] = "new_topic"

    return state

def router(state: HealthBotState) -> str:
    """Route to the next node based on the state."""
    # If the user wants to exit, end the conversation
    if state.get("next_action") == "exit":
        return "end_conversation"

    # If the user wants to learn about a new topic, restart the flow
    if state.get("next_action") == "new_topic":
        return "ask_health_topic"

    # If the user is not ready for a quiz, skip to related topics
    if state.get("quiz_ready") is False:
        return "suggest_related_topics"

    # If there are more questions to ask, go back to present_quiz_question
    current_index = state.get("current_question_index", 0)
    num_questions = state.get("num_questions", 1)
    if state.get("quiz_ready") and current_index < num_questions:
        return "present_quiz_question"

    # Otherwise, continue with the normal flow
    return "suggest_related_topics"

def end_conversation(state: HealthBotState) -> HealthBotState:
    """End the conversation with a farewell message."""
    # Add the farewell to the conversation
    state["messages"].append({
        "role": "assistant",
        "content": "Thank you for using HealthBot! Take care and stay healthy!"
    })

    # Print the farewell
    print("HealthBot: Thank you for using HealthBot! Take care and stay healthy!")

    return state

# Create the workflow
workflow = StateGraph(state_schema=HealthBotState)

# Add nodes
workflow.add_node("ask_health_topic", ask_health_topic)
workflow.add_node("search_health_info", search_health_info)
workflow.add_node("summarize_health_info", summarize_health_info)
workflow.add_node("present_summary", present_summary)
workflow.add_node("prompt_for_quiz", prompt_for_quiz)
workflow.add_node("create_quiz_questions", create_quiz_questions)
workflow.add_node("present_quiz_question", present_quiz_question)
workflow.add_node("collect_quiz_answer", collect_quiz_answer)
workflow.add_node("grade_quiz_answer", grade_quiz_answer)
workflow.add_node("present_feedback", present_feedback)
workflow.add_node("suggest_related_topics", suggest_related_topics)
workflow.add_node("ask_next_action", ask_next_action)
workflow.add_node("end_conversation", end_conversation)
workflow.add_node("router", router)

# Add edges
workflow.add_edge(START, "ask_health_topic")
workflow.add_edge("ask_health_topic", "search_health_info")
workflow.add_edge("search_health_info", "summarize_health_info")
workflow.add_edge("summarize_health_info", "present_summary")
workflow.add_edge("present_summary", "prompt_for_quiz")
workflow.add_edge("prompt_for_quiz", "create_quiz_questions")
workflow.add_edge("create_quiz_questions", "present_quiz_question")
workflow.add_edge("present_quiz_question", "collect_quiz_answer")
workflow.add_edge("collect_quiz_answer", "grade_quiz_answer")
workflow.add_edge("grade_quiz_answer", "present_feedback")
workflow.add_edge("present_feedback", "router")
workflow.add_edge("suggest_related_topics", "ask_next_action")
workflow.add_edge("ask_next_action", "router")

# Add conditional edges
workflow.add_conditional_edges(
    "router",
    {
        "ask_health_topic": lambda state: state.get("next_action") == "new_topic",
        "suggest_related_topics": lambda state: state.get("quiz_ready") is False,
        "present_quiz_question": lambda state: state.get("quiz_ready") and state.get("current_question_index", 0) < state.get("num_questions", 1),
        "end_conversation": lambda state: state.get("next_action") == "exit",
    }
)

workflow.add_edge("end_conversation", END)

# Compile the workflow
graph = workflow.compile()

# Create a Gradio interface
def healthbot_chat(message, history, difficulty="medium", level_of_detail="medium", num_questions=1):
    """Function to handle the Gradio chat interface."""
    # Initialize or get the current state
    if not hasattr(healthbot_chat, "state"):
        healthbot_chat.state = HealthBotState(
            messages=[],
            health_topic=None,
            quiz_ready=None,
            quiz_answer=None,
            next_action=None,
            difficulty=difficulty,
            level_of_details=level_of_detail,  # Set level_of_details from parameter
            num_questions=num_questions,
            current_question_index=0,
            search_results=None,
            summary=None,
            quiz_questions=None,
            current_quiz_question=None,
            quiz_grade=None,
            quiz_feedback=None,
            quiz_grades=[],
            related_topics=None
        )

    # If this is a new conversation or the user wants to restart
    if message.lower() in ["restart", "new", "new topic"]:
        healthbot_chat.state = HealthBotState(
            messages=[],
            health_topic=None,
            quiz_ready=None,
            quiz_answer=None,
            next_action=None,
            difficulty=difficulty,
            level_of_details=level_of_detail,  # Set level_of_details from parameter
            num_questions=num_questions,
            current_question_index=0,
            search_results=None,
            summary=None,
            quiz_questions=None,
            current_quiz_question=None,
            quiz_grade=None,
            quiz_feedback=None,
            quiz_grades=[],
            related_topics=None
        )
        return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "What health topic or medical condition would you like to learn about today?"}], ""

    # If this is the first message, it's the health topic
    if healthbot_chat.state.get("health_topic") is None:
        healthbot_chat.state["health_topic"] = message
        healthbot_chat.state["difficulty"] = difficulty
        healthbot_chat.state["level_of_details"] = level_of_detail  # Set level_of_details from parameter
        healthbot_chat.state["num_questions"] = num_questions

        # Update the state with search results and summary
        healthbot_chat.state = search_health_info(healthbot_chat.state)
        healthbot_chat.state = summarize_health_info(healthbot_chat.state)

        # Return the summary
        return history + [{"role": "user", "content": message}, {"role": "assistant", "content": healthbot_chat.state["summary"] + "\n\nWould you like to take a quick quiz to test your understanding? (yes/no)"}], ""

    # If waiting for quiz readiness response
    if healthbot_chat.state.get("quiz_ready") is None:
        healthbot_chat.state["quiz_ready"] = message.lower() in ["yes", "y", "sure", "ok", "okay"]

        if healthbot_chat.state["quiz_ready"]:
            # Create quiz questions
            healthbot_chat.state = create_quiz_questions(healthbot_chat.state)

            # Return the first question
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"Question 1: {healthbot_chat.state['current_quiz_question']}"}], ""
        else:
            # Skip to related topics
            healthbot_chat.state = suggest_related_topics(healthbot_chat.state)

            # Ask for next action
            related_topics = healthbot_chat.state.get("related_topics", [])
            if related_topics:
                prompt = "Would you like to:\n1. Learn about one of these related topics (enter the number)\n2. Learn about a new health topic (enter 'new')\n3. Exit (enter 'exit')"
            else:
                prompt = "Would you like to learn about a new health topic (enter 'new') or exit (enter 'exit')?"

            suggestion_text = "You might also be interested in these related topics:\n"
            for i, topic in enumerate(related_topics):
                suggestion_text += f"{i+1}. {topic}\n"

            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": suggestion_text + "\n" + prompt}], ""

    # If waiting for quiz answer
    if healthbot_chat.state.get("quiz_ready") and healthbot_chat.state.get("quiz_answer") is None:
        healthbot_chat.state["quiz_answer"] = message

        # Grade the answer
        healthbot_chat.state = grade_quiz_answer(healthbot_chat.state)

        # Check if there are more questions
        current_index = healthbot_chat.state.get("current_question_index", 0)
        num_questions = healthbot_chat.state.get("num_questions", 1)

        if current_index < num_questions - 1:
            # Increment the question index
            healthbot_chat.state["current_question_index"] = current_index + 1
            healthbot_chat.state["quiz_answer"] = None

            # Return only the next question (without showing the grade for the current question)
            next_question = healthbot_chat.state["quiz_questions"][current_index + 1]
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"Question {current_index + 2}: {next_question}"}], ""
        else:
            # No more questions, create a summary of all questions and grades
            quiz_grades = healthbot_chat.state.get("quiz_grades", [])
            quiz_questions = healthbot_chat.state.get("quiz_questions", [])

            # Create a summary of all questions and grades
            summary = "Quiz Results:\n\n"

            # Add each question and its grade
            for i, (question, grade_item) in enumerate(zip(quiz_questions, quiz_grades)):
                summary += f"Question {i+1}: {question}\n"

                # Parse the grade to extract just the markdown text
                if isinstance(grade_item, dict) and 'grade' in grade_item:
                    # Extract just the markdown text of the grade
                    summary += f"{grade_item['grade']}\n\n"
                elif isinstance(grade_item, str):
                    # If it's a string, check if it's in dictionary-like format
                    if grade_item.startswith('{') and "grade" in grade_item:
                        try:
                            # Try to evaluate the string as a dictionary
                            import ast
                            grade_dict = ast.literal_eval(grade_item)
                            if isinstance(grade_dict, dict) and 'grade' in grade_dict:
                                # Extract just the grade value
                                summary += f"{grade_dict['grade']}\n\n"
                            else:
                                # Fallback to original string if not properly formatted
                                summary += f"{grade_item}\n\n"
                        except:
                            # Fallback to original string if evaluation fails
                            summary += f"{grade_item}\n\n"
                    else:
                        # If not in dictionary format, use as is
                        summary += f"{grade_item}\n\n"
                else:
                    # Fallback for any other type
                    summary += f"{grade_item}\n\n"

            # Add a final summary line
            summary += f"You've completed all {num_questions} questions! Thank you for testing your knowledge.\n\n"

            # Suggest related topics
            healthbot_chat.state = suggest_related_topics(healthbot_chat.state)

            # Ask for next action
            related_topics = healthbot_chat.state.get("related_topics", [])
            if related_topics:
                prompt = "Would you like to:\n1. Learn about one of these related topics (enter the number)\n2. Learn about a new health topic (enter 'new')\n3. Exit (enter 'exit')"
            else:
                prompt = "Would you like to learn about a new health topic (enter 'new') or exit (enter 'exit')?"

            suggestion_text = "You might also be interested in these related topics:\n"
            for i, topic in enumerate(related_topics):
                suggestion_text += f"{i+1}. {topic}\n"

            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": summary + suggestion_text + "\n" + prompt}], ""

    # If waiting for next action
    if healthbot_chat.state.get("related_topics") is not None and healthbot_chat.state.get("next_action") is None:
        related_topics = healthbot_chat.state.get("related_topics", [])

        if message.lower() in ["exit", "quit", "bye", "goodbye"]:
            healthbot_chat.state["next_action"] = "exit"
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "Thank you for using HealthBot! Take care and stay healthy!"}], ""
        elif message.lower() in ["new", "new topic"]:
            # Reset the state for a new topic
            healthbot_chat.state = HealthBotState(
                messages=[],
                health_topic=None,
                quiz_ready=None,
                quiz_answer=None,
                next_action=None,
                difficulty=difficulty,
                level_of_details=level_of_detail,  # Set level_of_details from parameter
                num_questions=num_questions,
                current_question_index=0,
                search_results=None,
                summary=None,
                quiz_questions=None,
                current_quiz_question=None,
                quiz_grade=None,
                quiz_feedback=None,
                quiz_grades=[],
                related_topics=None
            )
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "What health topic or medical condition would you like to learn about today?"}], ""
        elif related_topics and message.isdigit() and 1 <= int(message) <= len(related_topics):
            # User selected a related topic
            selected_topic = related_topics[int(message) - 1]

            # Reset the state but keep the selected topic
            healthbot_chat.state = HealthBotState(
                messages=[],
                health_topic=selected_topic,
                quiz_ready=None,
                quiz_answer=None,
                next_action=None,
                difficulty=difficulty,
                level_of_details=level_of_detail,  # Set level_of_details from parameter
                num_questions=num_questions,
                current_question_index=0,
                search_results=None,
                summary=None,
                quiz_questions=None,
                current_quiz_question=None,
                quiz_grade=None,
                quiz_feedback=None,
                quiz_grades=[],
                related_topics=None
            )

            # Update the state with search results and summary
            healthbot_chat.state = search_health_info(healthbot_chat.state)
            healthbot_chat.state = summarize_health_info(healthbot_chat.state)

            # Return the summary
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": f"Here's information about {selected_topic}:\n\n" + healthbot_chat.state["summary"] + "\n\nWould you like to take a quick quiz to test your understanding? (yes/no)"}], ""
        else:
            # Default to new topic
            healthbot_chat.state = HealthBotState(
                messages=[],
                health_topic=None,
                quiz_ready=None,
                quiz_answer=None,
                next_action=None,
                difficulty=difficulty,
                level_of_details=level_of_detail,  # Set level_of_details from parameter
                num_questions=num_questions,
                current_question_index=0,
                search_results=None,
                summary=None,
                quiz_questions=None,
                current_quiz_question=None,
                quiz_grade=None,
                quiz_feedback=None,
                quiz_grades=[],
                related_topics=None
            )
            return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "What health topic or medical condition would you like to learn about today?"}], ""

    # Default response
    return history + [{"role": "user", "content": message}, {"role": "assistant", "content": "I'm not sure how to respond to that. Would you like to learn about a health topic?"}], ""


# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# HealthBot: AI-Powered Patient Education System")
    gr.Markdown("Ask about any health topic, get a summary, take a quiz, and explore related topics.")

    with gr.Row():
        with gr.Column(scale = 3):
            # Initialize chatbot with the welcome message
            initial_message = [{"role": "assistant", "content": "What health topic or medical condition would you like to learn about today?"}]
            chatbot = gr.Chatbot(height = 600, type = "messages", value=initial_message)

            # Text input (initially visible)
            msg = gr.Textbox(
                label = "Type your message here...",
                placeholder = "e.g., diabetes, asthma, heart disease",
                visible = True
            )

            # Yes/No buttons (initially hidden)
            with gr.Row():
                yes_btn = gr.Button("✅ Yes", variant = "primary", visible = False)
                no_btn = gr.Button("❌ No", variant = "secondary", visible = False)

            clear = gr.Button("Clear Conversation")

        with gr.Column(scale = 1):
            difficulty = gr.Radio(
                ["easy", "medium", "hard"],
                label = "Difficulty Level",
                info = "Select the difficulty level for quizzes",
                value = "medium"
            )

            level_of_detail = gr.Radio(
                ["easy", "medium", "hard"],
                label = "Level of Detail",
                info = "Select the level of detail for information",
                value = "medium"
            )

            num_questions = gr.Slider(
                minimum = 1,
                maximum = 5,
                step = 1,
                label = "Number of Quiz Questions",
                info = "How many questions would you like in your quiz?",
                value = 1
            )


    # Enhanced chat function that manages input/button visibility
    def enhanced_healthbot_chat(message, history, difficulty = "medium", level_of_detail = "medium", num_questions = 1):
        response_history, _ = healthbot_chat(message, history, difficulty, level_of_detail, num_questions)

        # Check if the last assistant message asks a yes/no question
        last_message = response_history[-1]["content"].lower() if response_history else ""
        is_yes_no_question = any(phrase in last_message for phrase in [
            "would you like to take a quiz",
            "ready for the next question",
            "yes/no"
        ]
                                 )

        if is_yes_no_question:
            # Hide text input, show buttons
            return (
                response_history,
                "",  # Clear text input
                gr.update(visible = False),  # Hide text input
                gr.update(visible = True),  # Show yes button
                gr.update(visible = True)  # Show no button
            )
        else:
            # Show text input, hide buttons
            return (
                response_history,
                "",  # Clear text input
                gr.update(visible = True),  # Show text input
                gr.update(visible = False),  # Hide yes button
                gr.update(visible = False)  # Hide no button
            )


    # Button click handlers
    def handle_yes_click(history, difficulty, level_of_detail, num_questions):
        # Process the "yes" response and check what to show next
        response_history, _ = healthbot_chat("yes", history, difficulty, level_of_detail, num_questions)

        # Check if the response contains another yes/no question
        last_message = response_history[-1]["content"].lower() if response_history else ""
        is_yes_no_question = any(phrase in last_message for phrase in [
            "would you like to take a quiz",
            "ready for the next question",
            "yes/no"
        ]
                                 )

        if is_yes_no_question:
            # Keep buttons visible, hide text input
            return (
                response_history,
                "",  # Clear text input
                gr.update(visible = False),  # Hide text input
                gr.update(visible = True),  # Show yes button
                gr.update(visible = True)  # Show no button
            )
        else:
            # Show text input, hide buttons
            return (
                response_history,
                "",  # Clear text input
                gr.update(visible = True),  # Show text input
                gr.update(visible = False),  # Hide yes button
                gr.update(visible = False)  # Hide no button
            )


    def handle_no_click(history, difficulty, level_of_detail, num_questions):
        # Process the "no" response and check what to show next
        response_history, _ = healthbot_chat("no", history, difficulty, level_of_detail, num_questions)

        # Check if the response contains another yes/no question
        last_message = response_history[-1]["content"].lower() if response_history else ""
        is_yes_no_question = any(phrase in last_message for phrase in [
            "would you like to take a quiz",
            "ready for the next question",
            "yes/no",
            "(yes / no)",
            "Would you like to take a quick quiz to test your understanding? (yes / no)"
        ]
                                 )

        if is_yes_no_question:
            # Keep buttons visible, hide text input
            return (
                response_history,
                "",  # Clear text input
                gr.update(visible = False),  # Hide text input
                gr.update(visible = True),  # Show yes button
                gr.update(visible = True)  # Show no button
            )
        else:
            # Show text input, hide buttons
            return (
                response_history,
                "",  # Clear text input
                gr.update(visible = True),  # Show text input
                gr.update(visible = False),  # Hide yes button
                gr.update(visible = False)  # Hide no button
            )


    # Event handlers
    msg.submit(
        enhanced_healthbot_chat,
        [msg, chatbot, difficulty, level_of_detail, num_questions],
        [chatbot, msg, msg, yes_btn, no_btn]  # Note: msg appears twice for value and visibility
    )

    yes_btn.click(
        handle_yes_click,
        [chatbot, difficulty, level_of_detail, num_questions],
        [chatbot, msg, msg, yes_btn, no_btn]  # Note: msg appears twice for value and visibility
    )

    no_btn.click(
        handle_no_click,
        [chatbot, difficulty, level_of_detail, num_questions],
        [chatbot, msg, msg, yes_btn, no_btn]  # Note: msg appears twice for value and visibility
    )

    clear.click(
        lambda: (
            None,  # Clear chatbot
            "",  # Clear text input value
            gr.update(visible = True),  # Show text input
            gr.update(visible = False),  # Hide yes button
            gr.update(visible = False)  # Hide no button
        ),
        None,
        [chatbot, msg, msg, yes_btn, no_btn],
        queue = False
    )

# Run the standalone workflow (for testing without Gradio)
def run_healthbot():
    """Run the HealthBot workflow in the terminal."""
    # Initialize the state
    state = HealthBotState(
        messages=[],
        health_topic=None,
        quiz_ready=None,
        quiz_answer=None,
        next_action=None,
        difficulty=None,
        level_of_details=None,  # Added for consistency with other state initializations
        num_questions=None,
        current_question_index=0,
        search_results=None,
        summary=None,
        quiz_questions=None,
        current_quiz_question=None,
        quiz_grade=None,
        quiz_feedback=None,
        related_topics=None
    )

    # Run the workflow
    graph.invoke(state)

# Main entry point
if __name__ == "__main__":
    # Launch the Gradio interface
    demo.launch()

    # Alternatively, run the terminal version
    # run_healthbot()