File size: 2,681 Bytes
f59eec7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import io
import matplotlib.pyplot as plt
import requests
import inflect
from PIL import Image

def load_image_from_url(url):
    return Image.open(requests.get(url, stream=True).raw)

def render_results_in_image(in_pil_img, in_results):
    plt.figure(figsize=(16, 10))
    plt.imshow(in_pil_img)

    ax = plt.gca()

    for prediction in in_results:

        x, y = prediction['box']['xmin'], prediction['box']['ymin']
        w = prediction['box']['xmax'] - prediction['box']['xmin']
        h = prediction['box']['ymax'] - prediction['box']['ymin']

        ax.add_patch(plt.Rectangle((x, y),
                                   w,
                                   h,
                                   fill=False,
                                   color="green",
                                   linewidth=2))
        ax.text(
           x,
           y,
           f"{prediction['label']}: {round(prediction['score']*100, 1)}%",
           color='red'
        )

    plt.axis("off")

    # Save the modified image to a BytesIO object
    img_buf = io.BytesIO()
    plt.savefig(img_buf, format='png',
                bbox_inches='tight',
                pad_inches=0)
    img_buf.seek(0)
    modified_image = Image.open(img_buf)

    # Close the plot to prevent it from being displayed
    plt.close()

    return modified_image

def summarize_predictions_natural_language(predictions):
    summary = {}
    p = inflect.engine()

    for prediction in predictions:
        label = prediction['label']
        if label in summary:
            summary[label] += 1
        else:
            summary[label] = 1

    result_string = "In this image, there are "
    for i, (label, count) in enumerate(summary.items()):
        count_string = p.number_to_words(count)
        result_string += f"{count_string} {label}"
        if count > 1:
          result_string += "s"

        result_string += " "

        if i == len(summary) - 2:
          result_string += "and "

    # Remove the trailing comma and space
    result_string = result_string.rstrip(', ') + "."

    return result_string


##### To ignore warnings #####
import warnings
import logging
from transformers import logging as hf_logging

def ignore_warnings():
    # Ignore specific Python warnings
    warnings.filterwarnings("ignore", message="Some weights of the model checkpoint")
    warnings.filterwarnings("ignore", message="Could not find image processor class")
    warnings.filterwarnings("ignore", message="The `max_size` parameter is deprecated")

    # Adjust logging for libraries using the logging module
    logging.basicConfig(level=logging.ERROR)
    hf_logging.set_verbosity_error()

########