Spaces:
Sleeping
Sleeping
File size: 4,431 Bytes
9b5b26a 896e3fa 9b5b26a c19d193 6aae614 8fe992b 9b5b26a 52720d0 9b5b26a 52720d0 9b5b26a 52720d0 9b5b26a 8c01ffb 6aae614 896e3fa d7b8ac5 8c01ffb 52720d0 8c01ffb 861422e 9b5b26a 8c01ffb 896e3fa 52720d0 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
# from smolagents.models import TransformersModel
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
@tool
def get_weather_tool(location: str) -> dict:
"""Tool that fetches the current weather for a given location using DuckDuckGo search.
Args:
location: The name of the city (e.g., 'New York').
Returns:
A dictionary containing temperature (°C) and weather condition.
"""
search = DuckDuckGoSearchTool()
query = f"current weather in {location}"
search_results = search.run(query)
# Try to extract temperature and condition from search results
match = re.search(r"(-?\d+°C).*?\b(?:clear|cloudy|rain|snow|storm|sunny|drizzle|mist)\b", search_results, re.IGNORECASE)
if match:
temp = match.group(1) # Extract temperature
condition = match.group(0).split()[-1] # Extract last weather-related word
return {"temperature": temp, "condition": condition, "location": location}
return {"error": f"Could not extract weather data for {location}. Try again later."}
@tool
def suggest_outfit_tool(weather_data: dict) -> str:
"""Tool that suggests an outfit based on weather fetched from get_weather_from_duckduckgo tool.
Args:
weather_data: A dictionary containing temperature (°C) and weather condition.
Returns:
A clothing suggestion based on the weather.
"""
if "error" in weather_data:
return weather_data["error"]
temp = int(re.search(r"-?\d+", weather_data["temperature"]).group()) # Extract numeric value
condition = weather_data["condition"]
location = weather_data["location"]
# Outfit recommendations based on temperature
if temp > 25:
outfit = "It's hot outside! Wear light clothing, sunglasses, and a hat."
elif 15 <= temp <= 25:
outfit = "Mild weather. A t-shirt and jeans should be fine, but carry a light jacket."
elif 5 <= temp < 15:
outfit = "Chilly weather. Wear a sweater and a jacket."
else:
outfit = "It's cold! Wear a heavy coat, scarf, gloves, and boots."
# Adjust for specific weather conditions
if "rain" in condition:
outfit += " Also, carry an umbrella or wear a raincoat."
elif "snow" in condition:
outfit += " Make sure to wear waterproof boots and layer up!"
return f"Weather in {location}: {condition}, {temp}°C. {outfit}"
# @tool
# def my_custom_tooltom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
# #Keep this format for the description / args / args description but feel free to modify the tool
# """A tool that does nothing yet
# Args:
# arg1: the first argument
# arg2: the second argument
# """
# return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
#model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',
model_id="https://jc26mwg228mkj8dw.us-east-1.aws.endpoints.huggingface.cloud/",
custom_role_conversions=None,
)
# # Import tool from Hub
# image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[
final_answer,
get_current_time_in_timezone,
get_weather_tool,
suggest_outfit_tool,
DuckDuckGoSearchTool(),
],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |