File size: 18,395 Bytes
f8cac16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import os
import random
import json
import gradio as gr
import google.generativeai as genai

# Configure Gemini API - For Hugging Face deployment
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)

# Challenge database with different difficulty levels
challenges = {
    "easy": [
        {
            "id": "e1",
            "title": "Sum of Two Numbers",
            "description": "Write a function that takes two numbers as input and returns their sum.",
            "example_input": "5, 3",
            "example_output": "8",
            "test_cases": [
                {"input": "5, 3", "output": "8"},
                {"input": "10, -5", "output": "5"},
                {"input": "0, 0", "output": "0"}
            ]
        },
        {
            "id": "e2",
            "title": "Even or Odd",
            "description": "Write a function that determines if a number is even or odd.",
            "example_input": "4",
            "example_output": "Even",
            "test_cases": [
                {"input": "4", "output": "Even"},
                {"input": "7", "output": "Odd"},
                {"input": "0", "output": "Even"}
            ]
        },
        {
            "id": "e3",
            "title": "String Reversal",
            "description": "Write a function that reverses a string.",
            "example_input": "hello",
            "example_output": "olleh",
            "test_cases": [
                {"input": "hello", "output": "olleh"},
                {"input": "python", "output": "nohtyp"},
                {"input": "a", "output": "a"}
            ]
        }
    ],
    "medium": [
        {
            "id": "m1",
            "title": "Palindrome Check",
            "description": "Write a function that checks if a string is a palindrome (reads the same backward as forward).",
            "example_input": "racecar",
            "example_output": "True",
            "test_cases": [
                {"input": "racecar", "output": "True"},
                {"input": "hello", "output": "False"},
                {"input": "A man a plan a canal Panama", "output": "True"}
            ]
        },
        {
            "id": "m2",
            "title": "List Comprehension",
            "description": "Write a function that returns a list of all even numbers from 1 to n using list comprehension.",
            "example_input": "10",
            "example_output": "[2, 4, 6, 8, 10]",
            "test_cases": [
                {"input": "10", "output": "[2, 4, 6, 8, 10]"},
                {"input": "5", "output": "[2, 4]"},
                {"input": "1", "output": "[]"}
            ]
        },
        {
            "id": "m3",
            "title": "Fibonacci Sequence",
            "description": "Write a function that returns the nth number in the Fibonacci sequence.",
            "example_input": "6",
            "example_output": "8",
            "test_cases": [
                {"input": "6", "output": "8"},
                {"input": "1", "output": "1"},
                {"input": "10", "output": "55"}
            ]
        }
    ],
    "hard": [
        {
            "id": "h1",
            "title": "Anagram Check",
            "description": "Write a function that determines if two strings are anagrams of each other.",
            "example_input": "listen, silent",
            "example_output": "True",
            "test_cases": [
                {"input": "listen, silent", "output": "True"},
                {"input": "hello, world", "output": "False"},
                {"input": "Astronomer, Moon starer", "output": "True"}
            ]
        },
        {
            "id": "h2",
            "title": "Prime Number Generator",
            "description": "Write a function that generates all prime numbers up to n using the Sieve of Eratosthenes algorithm.",
            "example_input": "30",
            "example_output": "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]",
            "test_cases": [
                {"input": "30", "output": "[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]"},
                {"input": "10", "output": "[2, 3, 5, 7]"},
                {"input": "2", "output": "[2]"}
            ]
        },
        {
            "id": "h3",
            "title": "Recursive Binary Search",
            "description": "Write a recursive function that performs binary search on a sorted list.",
            "example_input": "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 7",
            "example_output": "6",
            "test_cases": [
                {"input": "[1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 7", "output": "6"},
                {"input": "[1, 2, 3, 4, 5], 1", "output": "0"},
                {"input": "[1, 3, 5, 7, 9], 4", "output": "-1"}
            ]
        }
    ]
}

# User session data
user_data = {
    "current_challenge": None,
    "difficulty_level": "easy",
    "correct_answers": 0,
    "total_attempts": 0,
    "solution_history": []  # Store previous solutions for LLM analysis
}

def get_challenge():
    """Get a random challenge based on the current difficulty level"""
    level = user_data["difficulty_level"]
    available_challenges = challenges[level]
    challenge = random.choice(available_challenges)
    user_data["current_challenge"] = challenge
    return challenge

def evaluate_code_with_gemini(user_code, challenge):
    """Evaluate the user's code using Gemini API"""
    try:
        # Check if API key is available
        if not GEMINI_API_KEY:
            return {
                "test_results": [],
                "overall_assessment": "API Key Missing",
                "feedback": "The Gemini API key is not configured. Please check the Hugging Face Space settings.",
                "is_correct": False,
                "code_quality_score": 5,
                "algorithm_efficiency_score": 5
            }
            
        # Construct the prompt for Gemini
        prompt = f"""
        Evaluate the following Python code solution for the challenge:
        
        Challenge: {challenge['title']}
        Description: {challenge['description']}
        
        Test Cases:
        {json.dumps(challenge['test_cases'], indent=2)}
        
        User's Solution:
        ```python
        {user_code}
        ```
        
        Evaluate if the solution correctly solves the challenge based on the test cases.
        Consider:
        1. Correctness (does it produce the expected output for all test cases?)
        2. Efficiency (is the solution reasonably efficient?)
        3. Code quality (is the code well-structured and readable?)
        
        For each test case, indicate whether the solution passes or fails.
        Provide a brief explanation of why it passes or fails.
        Finally, provide an overall assessment: is the solution correct (pass all test cases)?
        
        Return your response in the following JSON format:
        {{
            "test_results": [
                {{"test_case": "input", "expected": "output", "result": "pass/fail", "explanation": "brief explanation"}}
            ],
            "overall_assessment": "pass/fail",
            "feedback": "brief feedback for the user",
            "is_correct": true/false,
            "code_quality_score": 1-10,
            "algorithm_efficiency_score": 1-10
        }}
        
        Ensure your response is valid JSON.
        """
        
        # Generate content with Gemini
        model = genai.GenerativeModel('gemini-1.5-pro')
        response = model.generate_content(prompt)
        
        # Parse the response
        try:
            result = json.loads(response.text)
            return result
        except json.JSONDecodeError:
            # If Gemini doesn't return valid JSON, provide a fallback response
            return {
                "test_results": [],
                "overall_assessment": "Unable to evaluate",
                "feedback": "There was an issue evaluating your code. Please try again.",
                "is_correct": False,
                "code_quality_score": 5,
                "algorithm_efficiency_score": 5
            }
    
    except Exception as e:
        return {
            "test_results": [],
            "overall_assessment": f"Error: {str(e)}",
            "feedback": "There was an error evaluating your code. Please check your syntax and try again.",
            "is_correct": False,
            "code_quality_score": 5,
            "algorithm_efficiency_score": 5
        }

def adjust_difficulty_with_llm(user_code, evaluation, challenge):
    """Use LLM to adjust difficulty based on code quality and approach"""
    # Check if API key is available
    if not GEMINI_API_KEY:
        return fallback_difficulty_adjustment(evaluation.get("is_correct", False))
        
    # Store the solution in history
    solution_entry = {
        "challenge_id": challenge["id"],
        "difficulty": user_data["difficulty_level"],
        "code": user_code,
        "is_correct": evaluation.get("is_correct", False),
        "code_quality_score": evaluation.get("code_quality_score", 5),
        "algorithm_efficiency_score": evaluation.get("algorithm_efficiency_score", 5)
    }
    user_data["solution_history"].append(solution_entry)
    
    # Format the prompt for Gemini
    prompt = f"""
    Analyze the user's solution and programming skill level to recommend an appropriate difficulty level.
    
    Current Difficulty Level: {user_data["difficulty_level"]}
    Challenge: {challenge["title"]}
    Description: {challenge["description"]}
    
    User's Solution:
    ```python
    {user_code}
    ```
    
    Evaluation Summary:
    - Correctness: {"Correct" if evaluation.get("is_correct", False) else "Incorrect"}
    - Code Quality Score: {evaluation.get("code_quality_score", 5)}/10
    - Algorithm Efficiency Score: {evaluation.get("algorithm_efficiency_score", 5)}/10
    
    User's History:
    - Total Attempts: {user_data["total_attempts"]}
    - Correct Solutions: {user_data["correct_answers"]}
    - Success Rate: {user_data["correct_answers"] / user_data["total_attempts"] if user_data["total_attempts"] > 0 else 0:.2%}
    
    Based on this information, recommend the next difficulty level (easy, medium, or hard).
    Consider the following factors:
    1. Whether the solution is correct
    2. The quality and efficiency of the code
    3. The user's historical performance
    4. The current difficulty level
    
    Provide your recommendation in the following JSON format:
    {{
        "recommended_difficulty": "easy/medium/hard",
        "explanation": "brief explanation for the recommendation",
        "skill_assessment": "brief assessment of the user's skill level"
    }}
    
    Ensure your response is valid JSON.
    """
    
    try:
        # Generate content with Gemini
        model = genai.GenerativeModel('gemini-1.5-pro')
        response = model.generate_content(prompt)
        
        # Parse the response
        try:
            result = json.loads(response.text)
            old_difficulty = user_data["difficulty_level"]
            user_data["difficulty_level"] = result.get("recommended_difficulty", old_difficulty)
            
            # Ensure the difficulty is valid
            if user_data["difficulty_level"] not in ["easy", "medium", "hard"]:
                user_data["difficulty_level"] = old_difficulty
                
            return result
        except json.JSONDecodeError:
            # If Gemini doesn't return valid JSON, use a fallback approach
            return fallback_difficulty_adjustment(evaluation.get("is_correct", False))
    
    except Exception as e:
        return {
            "recommended_difficulty": user_data["difficulty_level"],
            "explanation": f"Error in difficulty adjustment: {str(e)}. Maintaining current difficulty.",
            "skill_assessment": "Unable to assess skill level due to an error."
        }

def fallback_difficulty_adjustment(is_correct):
    """Fallback method to adjust difficulty based on success rate"""
    if is_correct:
        user_data["correct_answers"] += 1
    user_data["total_attempts"] += 1
    
    # Calculate success rate
    success_rate = user_data["correct_answers"] / user_data["total_attempts"] if user_data["total_attempts"] > 0 else 0
    
    # Adjust difficulty based on success rate
    current_level = user_data["difficulty_level"]
    old_level = current_level
    
    if success_rate > 0.7 and current_level == "easy":
        user_data["difficulty_level"] = "medium"
    elif success_rate > 0.7 and current_level == "medium":
        user_data["difficulty_level"] = "hard"
    elif success_rate < 0.3 and current_level == "hard":
        user_data["difficulty_level"] = "medium"
    elif success_rate < 0.3 and current_level == "medium":
        user_data["difficulty_level"] = "easy"
    
    return {
        "recommended_difficulty": user_data["difficulty_level"],
        "explanation": f"Based on your success rate of {success_rate:.2%}, {'increasing' if user_data['difficulty_level'] != old_level and 'easy' in old_level else 'decreasing' if user_data['difficulty_level'] != old_level else 'maintaining'} difficulty.",
        "skill_assessment": "Skill assessment based on success rate only."
    }

def handle_submission(user_code):
    """Handle user code submission"""
    if not user_data["current_challenge"]:
        return "Please get a challenge first."
    
    challenge = user_data["current_challenge"]
    
    # Evaluate the code
    evaluation = evaluate_code_with_gemini(user_code, challenge)
    
    # Track correctness
    is_correct = evaluation.get("is_correct", False)
    if is_correct:
        user_data["correct_answers"] += 1
    user_data["total_attempts"] += 1
    
    # Adjust difficulty using LLM
    difficulty_adjustment = adjust_difficulty_with_llm(user_code, evaluation, challenge)
    
    # Format response
    response = f"## Evaluation Results\n\n"
    response += f"**Challenge:** {challenge['title']}\n\n"
    
    if "test_results" in evaluation and evaluation["test_results"]:
        response += "**Test Results:**\n"
        for test in evaluation["test_results"]:
            result = test.get("result", "N/A")
            input_val = test.get("test_case", "N/A")
            expected = test.get("expected", "N/A")
            explanation = test.get("explanation", "N/A")
            response += f"- Input: `{input_val}`, Expected: `{expected}`, Result: **{result}**\n"
            response += f"  {explanation}\n\n"
    
    response += f"**Overall Assessment:** {evaluation.get('overall_assessment', 'N/A')}\n\n"
    response += f"**Code Quality:** {evaluation.get('code_quality_score', 'N/A')}/10\n"
    response += f"**Algorithm Efficiency:** {evaluation.get('algorithm_efficiency_score', 'N/A')}/10\n\n"
    response += f"**Feedback:** {evaluation.get('feedback', 'N/A')}\n\n"
    
    response += f"**Difficulty Adjustment:**\n"
    response += f"- New Difficulty: {difficulty_adjustment.get('recommended_difficulty', user_data['difficulty_level'])}\n"
    response += f"- Reason: {difficulty_adjustment.get('explanation', 'N/A')}\n"
    response += f"- Skill Assessment: {difficulty_adjustment.get('skill_assessment', 'N/A')}\n"
    
    return response

def display_challenge():
    """Get and display a challenge"""
    challenge = get_challenge()
    
    response = f"## {challenge['title']}\n\n"
    response += f"**Difficulty:** {user_data['difficulty_level']}\n\n"
    response += f"**Description:** {challenge['description']}\n\n"
    response += f"**Example Input:** {challenge['example_input']}\n"
    response += f"**Example Output:** {challenge['example_output']}\n\n"
    response += "Write your solution in Python and submit it when ready."
    
    return response

def reset_session():
    """Reset the user session"""
    user_data["current_challenge"] = None
    user_data["difficulty_level"] = "easy"
    user_data["correct_answers"] = 0
    user_data["total_attempts"] = 0
    user_data["solution_history"] = []
    return "Session reset. Your progress has been cleared and difficulty has been reset to easy."

def check_api_key():
    """Check if the API key is properly configured"""
    if not GEMINI_API_KEY:
        return gr.Markdown("""
        ## ⚠️ API Key Not Found
        
        The Gemini API key is not configured. Please add it in the Space secrets with the name `GEMINI_API_KEY`.
        
        ### How to add a secret:
        1. Go to the Settings tab on your Space
        2. Navigate to the "Repository secrets" section
        3. Add a new secret with the name `GEMINI_API_KEY` and your API key as the value
        4. Restart the Space
        """)
    else:
        return gr.Markdown("# LLM-Adaptive Python Coding Challenge\nThis application provides Python coding challenges that adapt to your skill level using AI.")

# Set up the Gradio interface
with gr.Blocks(title="LLM-Adaptive Python Coding Challenge", theme=gr.themes.Base()) as app:
    header = gr.Markdown("Checking API configuration...")
    
    with gr.Row():
        with gr.Column(scale=2):
            challenge_display = gr.Markdown("Click 'Get Challenge' to start")
            
            with gr.Row():
                get_challenge_btn = gr.Button("Get Challenge")
                reset_btn = gr.Button("Reset Progress")
            
            code_input = gr.Code(language="python", lines=15, label="Your Solution")
            submit_btn = gr.Button("Submit Solution")
            
        with gr.Column(scale=3):
            result_display = gr.Markdown("Results will appear here")
    
    gr.Markdown("### How it works")
    gr.Markdown("1. Get a challenge by clicking 'Get Challenge'")
    gr.Markdown("2. Write your solution in Python")
    gr.Markdown("3. Submit your solution for evaluation")
    gr.Markdown("4. The AI will analyze your code and adjust the difficulty based on your coding style, efficiency, and correctness")
    
    # Check API key on load
    app.load(check_api_key, [], [header])
    
    get_challenge_btn.click(display_challenge, inputs=[], outputs=challenge_display)
    reset_btn.click(reset_session, inputs=[], outputs=result_display)
    submit_btn.click(handle_submission, inputs=[code_input], outputs=result_display)

# Launch the app
if __name__ == "__main__":
    app.launch()