Spaces:
Sleeping
Sleeping
File size: 2,945 Bytes
0f69612 1933b6e 4b87447 1933b6e bfdcb2a 1933b6e 1395b2d 1933b6e 0f69612 cd71cc8 1933b6e 3d0a97c 1933b6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
import os
from embedchain import App
import streamlit as st
with st.sidebar:
huggingface_access_token = st.text_input("Hugging face Token", key="chatbot_api_key", type="password")
"[Get Hugging Face Access Token](https://huggingface.co/settings/tokens)"
"[View the source code](https://github.com/embedchain/examples/mistral-streamlit)"
config = {
'llm': {
'provider': 'huggingface',
'config': {
'model': 'meta-llama/Meta-Llama-3-8B-Instruct',
'top_p': 0.5
}
},
'embedder': {
'provider': 'huggingface',
'config': {
'model': 'sentence-transformers/all-mpnet-base-v2'
}
}
}
st.title("💬 Chatbot")
st.caption("🚀 An Embedchain app powered by Mistral!")
if "messages" not in st.session_state:
st.session_state.messages = [
{
"role": "assistant",
"content": """
Hi! I'm a chatbot. I can answer questions and learn new things!\n
Ask me anything and if you want me to learn something do `/add <source>`.\n
I can learn mostly everything. :)
""",
}
]
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Ask me anything!"):
if not st.session_state.chatbot_api_key:
st.error("Please enter your Hugging Face Access Token")
st.stop()
os.environ["HUGGINGFACE_ACCESS_TOKEN"] = st.session_state.chatbot_api_key
app = App.from_config(config = config)
app.add("https://en.wikipedia.org/wiki/Indian_Premier_League")
if prompt.startswith("/add"):
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
prompt = prompt.replace("/add", "").strip()
with st.chat_message("assistant"):
message_placeholder = st.empty()
message_placeholder.markdown("Adding to knowledge base...")
app.add(prompt)
message_placeholder.markdown(f"Added {prompt} to knowledge base!")
st.session_state.messages.append({"role": "assistant", "content": f"Added {prompt} to knowledge base!"})
st.stop()
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant"):
msg_placeholder = st.empty()
msg_placeholder.markdown("Thinking...")
full_response = ""
for response in app.chat("Remove the context information and send the response for the prompt-" + prompt):
msg_placeholder.empty()
full_response += response
full_response = full_response.split('Answer:',full_response['answer'])[-1]
msg_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
|