Spaces:
Sleeping
Sleeping
File size: 34,749 Bytes
ed65c68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from dotenv import load_dotenv\n",
"load_dotenv()\n",
"\n",
"os.environ[\"GROQ_API_KEY\"]=os.getenv(\"GROQ_API_KEY\")\n",
"os.environ[\"OPENAI_API_KEY\"]=os.getenv(\"OPENAI_API_KEY\")\n",
"os.environ[\"GOOGLE_API_KEY\"] = os.getenv(\"GOOGLE_API_KEY\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# from langchain_openai import ChatOpenAI\n",
"# llm = ChatOpenAI(model=\"gpt-4o\")\n",
"\n",
"\n",
"# from langchain_google_genai import ChatGoogleGenerativeAI\n",
"# llm = ChatGoogleGenerativeAI(model=\"gemini-1.5-flash\")\n",
"# llm = ChatGoogleGenerativeAI(model=\"gemini-2.0-flash\")\n",
"\n",
"from langchain_groq import ChatGroq\n",
"llm = ChatGroq(model=\"qwen-2.5-32b\")\n",
"# llm = ChatGroq(model=\"deepseek-r1-distill-qwen-32b\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"AIMessage(content='Hello! How can I assist you today?', additional_kwargs={}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 30, 'total_tokens': 40, 'completion_time': 0.05, 'prompt_time': 0.004556183, 'queue_time': 0.07078565599999999, 'total_time': 0.054556183}, 'model_name': 'qwen-2.5-32b', 'system_fingerprint': 'fp_c527211fd1', 'finish_reason': 'stop', 'logprobs': None}, id='run-529411a7-693a-4255-ad06-4e5ca0f33fe1-0', usage_metadata={'input_tokens': 30, 'output_tokens': 10, 'total_tokens': 40})"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm.invoke(\"Hi\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### State"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from typing_extensions import TypedDict\n",
"\n",
"\n",
"class State(TypedDict):\n",
" \"\"\"\n",
" Represents the structure of the state used in the graph.\n",
" \"\"\"\n",
"\n",
" user_message: str\n",
" decision: str\n",
" yt_url: str\n",
" blog_title: str\n",
" blog_content: str"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Router"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"from pydantic import BaseModel, Field\n",
"from typing_extensions import Literal\n",
"from langchain_core.messages import SystemMessage, HumanMessage\n",
"\n",
"\n",
"class Route(BaseModel):\n",
" step: Literal[\"youtube\", \"topic\"] = Field(\n",
" None, description=\"The next step in the routing process\"\n",
" )\n",
"\n",
"\n",
"def router(state: State):\n",
"\n",
" print(f\"Node Called : router \\n {state}\")\n",
"\n",
" route = llm.with_structured_output(Route)\n",
"\n",
" decision = route.invoke(\n",
" [\n",
" SystemMessage(content=\"Route the user message to youtube or topic.\"),\n",
" HumanMessage(content=state[\"user_message\"]),\n",
" ]\n",
" )\n",
"\n",
" print(f\"Decision : {decision}\")\n",
" if decision.step == \"youtube\":\n",
" extract_url = llm.invoke(\n",
" [\n",
" SystemMessage(\n",
" content=\"Extract youtube url from user message. Only extract youtube link. Don't add any message.\"\n",
" ),\n",
" HumanMessage(content=state[\"user_message\"]),\n",
" ]\n",
" )\n",
"\n",
" return {\"yt_url\": extract_url.content, \"decision\": \"yt\"}\n",
"\n",
" return {\"decision\": decision.step}\n",
"\n",
"\n",
"def route_decision(state: State):\n",
"\n",
" print(f\"state : {state}\")\n",
" # Return the node name you want to visit next\n",
" if state[\"decision\"] == \"youtube\":\n",
" return \"youtube\"\n",
" elif state[\"decision\"] == \"topic\":\n",
" return \"topic\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Youtube Transcript"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from youtube_transcript_api import YouTubeTranscriptApi\n",
"\n",
"\n",
"def yt_transcipt(self, state: State) -> dict:\n",
" \"\"\"Fetches transcript from a given YouTube URL\"\"\"\n",
"\n",
" print(f\"Node Called : yt_transcipt\")\n",
"\n",
" video_id = state[\"yt_url\"].replace(\"https://www.youtube.com/watch?v=\", \"\")\n",
"\n",
" try:\n",
" transcript = YouTubeTranscriptApi.get_transcript(video_id)\n",
" output = \"\\n\".join([x[\"text\"] for x in transcript])\n",
" print(\"β
Transcription fetched successfully.\")\n",
" except Exception as e:\n",
" print(f\"β Error fetching transcript: {e}\")\n",
" output = \"\"\n",
"\n",
" return {\"yt_transcription\": output}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Content Generator"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"class BlogContent(BaseModel):\n",
" title: str = Field(description=\"Title of Blog\")\n",
" content: str = Field(description=\"\")\n",
"\n",
"\n",
"def generate_blog_content(state: State):\n",
"\n",
" blog_llm = llm.with_structured_output(BlogContent)\n",
"\n",
" blog_content = blog_llm.invoke(\n",
" [\n",
" SystemMessage(content=\"Generate SEO Friendly Blog of User Topic\"),\n",
" HumanMessage(content=f\"User Topic : {state['user_message']}\"),\n",
" ]\n",
" )\n",
"\n",
" print(f\"### blog_content : {blog_content}\")\n",
"\n",
" return blog_content"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Build Graph"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAAHICAIAAAA3BRpnAAAAAXNSR0IArs4c6QAAIABJREFUeJztnWdcU1cfx8/NXhBk7yVbcYHbuhXBgbPubd0bxT3qqHt0+Lho68BVW7dWrasWqlZURBSBgCzZO5PkJnle3DZSGgFDkntvcr4fXiR3nPxy+OV/xj0DUavVAAIhMBS8BUAgDQA9CiE60KMQogM9CiE60KMQogM9CiE6NLwFEIXKEoWwXCGuVkqEqKKGHP1xDCaFzaNy+FTLZnQrezrecgwFYub9o0XZNZmvRJnJomb2DEWNimtJ41rRaHQEb12NQqUEwgqFuFrJYFHK8mu8WnKbB/McvVh469Iz5uvR8kL5n1dLWVxaM3u6dzC3mQMDb0VNoqJY8S5ZVFGkEFehXQbb2rqQ++vUxkw9+ue1snfJ4q6DbTxbcPHWomdy3kr+vFrq5sfpGmmLtxb9YI4ePbMzp0OYTfPWpubO2rxLFsdfKR23wp1CJUe9pR7Mq12vUoLvlgj6TXA0bYMCALxacgfOcD60IkOJkj4GmVEcVanAweWCeXt88BZiVA5FZ0zf7E1nkjiamlEcPbMze1y0O94qjM24FR5ndmbjraJJmEscjbtU6uLL8WrBwVsIDuSkSt+9EvUYaYe3EB0xizhalC0reCc1T4MCANz92WWF8vcCKd5CdMQsPBp/tazLYBPpiNGNroNt/rxaircKHTF9j+alSWwcGS4+bLyF4ImDB8vRk531WoK3EF0wfY+mJ4psXZhG/tC+ffvm5+d/6l0ZGRmDBg0yjCJg58ZMTxQaKHGDYvoefZcs9jLuw6TCwsLKykodbkxJSTGAnL/xbsnNfCU2XPqGw8Q9WpxT4+TF5lhSDZE4iqL79+8fOHBg586dIyIi9u7dq1AoEhISsFg4ZMiQqKgoAEB5efn69esHDBjQpUuXYcOGnT17Frs9IyMjNDT04cOHo0aNmjRp0uHDhzdu3FhYWBgaGnr69Gm9q2WwKN4tuWRsOZn42LzKEjmVZqju62PHjl2/fn3z5s2urq5ZWVlbtmxhMBizZ8/etm3bqlWrYmNj3dzcAACbNm3Kysr66quvbGxsEhMTt27d6ujo2LNnTzqdDgA4cuTIxIkTg4KCXF1dhULh/fv3T506xWYbpPZMYyCVJQrSVc1N3KPiaiWXb5AgCgAQCAQ+Pj6dOnUCALi6uh46dAhBEBqNxuVyAQCWlpbYi6ioKAqF4uLiAgDw8PA4f/7848ePe/bsiSAIACA0NHTIkCFYgkwmE0EQKysrAwnmWtLEVaiBEjccJu9RlMc31Hfs3r37+vXrV61a1adPnw4dOnh6emq9jM1mHzt2LCEhobKyUqVSVVdXY/EVIzg42EDy/guXTyvOlRnt4/SFiXsUQRAa3VB17oiICC6Xe/78+fXr1yuVyh49eqxcudLa2rr2NSiKzp8/X6lULlu2zNPTk0qlYpVUDTwez0Dy/guVhlAo5Htwb+IeZXEowgqF4dLv0aNHjx49pFJpXFzcnj17Nm/evG/fvtoXJCcnCwSCo0ePtm3bFjtSUVHh7OxsOEn1IKpEmRzytZLJp/iT4FrSxNWGqoE9ePAA6wRls9n9+vUbOnSoQCDQnMUGQtTU1AAA+Hw+djApKSk/Px+vMRLiapRrSb6oZOIetbShU2mG+o5nzpxZtWrV8+fP379/n5CQcOfOnZCQEKy1BACIi4vLzMz08/NjMBhnz54tLS19/Pjxzp07O3XqlJ2dXV5e/t8ELSwsSktLX7x4UVBQYAjBCILwbUg4NU9t6hyMFshrVIZIuaysbM2aNX369OnYsePAgQO3bdsmFArVajWKogsWLOjYseOsWbPUavXNmzcHDRrUpUuX6dOnp6enx8fHd+/efdSoUTk5OSEhIY8fP9YkWFBQMGLEiI4dOx48eNAQgr9dnG6IZA2N6Y/Nu3Wi0Lslz7ed8ZomxCTzlTjlr+qB053wFvLJmHhZDwDwac0rzqvBWwX+FOXIfNtY4K1CF8hXg/5UmrfmPbpeFtTJstlHVknIysqaMmWK1lMI8tFyZtiwYYsWLdKr0g8sXrw4MTFR6yk+n19VVaX11IoVK8LDw7WeEpajac+Ek9fb6FWmkTD9sr7BYg5F0eLiYq2nhEKhhYX22MPlcjWtdb1TWloql8u1npLJZCyW9lUerKysOBzt47hvHS/0bsXzbUvKCo/px1EAgHcwNyNJVJJbY+emZZAejUbDq8PyY9ja6nNEdlmBHCCApAY1i/ooRr/xDuf356qUeOvAgzO7cvpPdMRbhe6Yi0cBAGOjPU5tJ/cMSR04vSNnTJQbQr4noB8wi/qoBolQeeHb9+NXuZP6f9Z4zuzMGTzThWdlqJFfxsGM4igAgGNBjZjmeCBKUJqvvUViMlQUKg5ECfqOcyC7Qc0ujmq4fbJIpVJ3GWxraW1qrUZxFRp/tUytUveb4EgxiRBkph7F5uL9eaU0INTS3oNp5AlPBiLrjaQ4R/b6cVWXwbb+IaTsrteK+XoUIzVBmJ4oynotDu7GRxDAtaRxLWk0kqyOpFSoRZWouBpFAPIyrtIjkOPbxiKgvem4E8PcPaohO0VSVaoQV6MSoVIuU+k38ffv36tUqtrD7/UCi01lcSkcS6qVLd09kGuqDUFTq43pjEegAVfa+f7762hNTfiU9ob7CBPGJCrVEJMGehRCdGBZbww4HA6NBrNaR2DGGQOJRIJNbILoAPSoMaDRaCqVnvsKzAdYHzUGKIoqFAacQm3awDhqDLBFcvBWQVagR41BTU0NrI/qDPSoMeDxeAyG6WyOaGSgR42BSCSCcVRnYJsJQnRgHDUGdDod9j3pDIyjxkChUMC+J52BcdQY0Ol0OAZSZ2AcNQYKheJjazpAGgR6FEJ0YFlvDNhsNhz3pDMw44yBVCqF/aM6A8t6CNGBcdQYcLlc+CxUZ6BHjYFYLIZlvc7Ash5CdGAcNQawrG8K0KPGAJb1TQGW9RCiA+OoMYBzl5sCzDhjAOcuNwVY1kOIDoyjxgDOr28KMI4aAzi/vinAOGoM4LinpgAzzhjAcU9NAZb1EKID46gxgA9CmwKMo8ZALpfDsl5nYBw1BnBMSVOAHjUGcExJU4AeNQYwjjYF6FFjAONoU4AeNQYsFotiGnt34gHc586ADB48GEEQtVotFouxVUjVarVKpbp+/Tre0sgEjKMGxN3d/cmTJ5q31dXVarW6Y8eOuIoiH7AAMiDTpk2zsbGpfYTP50+cOBE/RaQEetSAhISEBAYG1q5N+fr6du7cGVdR5AN61LBMmjRJE0r5fP7kyZPxVkQ+oEcNS7t27YKDg7FQ6uvr26VLF7wVkQ/oUYMzceJEGxsbPp8/ZcoUvLWQErNu1ytq1KX5NeJq1KCfwkN82vqFy+VyW3ZLwUuRQT+La0mzdWbSmSa1X5n59o/GXSpNTxRx+TS2hen8UOUSZUWx3KcNr+dIO7y16A0z9eitE0WWtsyWXa3wFmIQ3j6pKs6VDpzuiLcQ/WCOHr1zpphvywzowMdbiAERvKguypYMmGwKNjW7NlNJnlwiVJm2QQEAPm0tVUpQ8E6GtxA9YHYeLSuoMbEmxcegMSllBaYw2MrsPCqqRK1smXirMAZWtkxJtRJvFXrAdJq0jUSlVKMKs6iCo6gKMYnGhtnFUQjpgB6FEB3oUQjRgR6FEB3oUQjRgR6FEB3oUQjRgR6FEB3oUQjRgR6FEB3oUQjRMbvn9Tqwdn1UfPzvmrdUKtXBwalL5+6TJ83k8Xi4SjMLoEcbhYuza1TUWuy1QqFIS0s5e+74u3eCXTsPIIiOI/3evctYtWbR2dPX9KrUBIEebRQsNrttm1DN2w7tO1tb2+zavTk5+WVwcBvd0kxLS9GfQFMG1kd1JCgwGABQXFKEvX31KnHh4hkDIrqGD+y2NGp2ytvX2PFzP50MH9hNc1dxcVGvPqGPHv1x7Pjh7Ts3FhUV9uoT+vMvpwEAlZUVX21fP3rswAERXefOn/IiMQG75d27jF59Qv/88+GUaaPmzJ2Ex3fFGRhHdSTvfQ4AwMHeEQCQm5u9LHput649Fy1YAQD44djBZcvn/Pj9eXt7h4/dPmb0ZKFIGBd3/8ihUywWW6VSrVi5QCQWrYjeaGNte/nK+ZWrFh48cMLb24dOpwMAjp84Mvrzif5+Qcb9loQAxtHGgv6DTCZ7+fL5wYP7vLyat2jRCgBw+crPbDZn1cpNzZv7Nm/uu2bVFhRFb92ur6LJYrGYDCaCIHy+FZPJTHj2JC397bKote3atvfw8Jo/b5mDg9OFi2cBAABBAABt2oSGDxji7e1jvC9MGGAcbRQZGen9wjpp3iII0qFDl6gla7AGU1p6ip9vgGYnOw6H4+bmkZGR1vj0U1KS6XR6m9Yh2FsKhdIquK1AkKq5ICgoWH/fhmRAjzYKV1f3Nau3YK8vXfrpyV/xq1dttrSwxI5IJGIba9va13M4XIlE3Pj0JRKxQqEIC/+wGpRSqbS2/rAuJJdrvp1c0KONgslkBvj/XRecM2fJo8d/HDnyzbJ/eqO4XJ5Y/K9FcsRiEebaOj1Tcrn2iZpcLo/BYBw9fLr2Qbg8OQbMhU+Gb8mfMX3e9RuXkpJeYEf8/YJS01I0OysLRcKcnKyAgBZYQJXJZCj695JSgo9UAAICWsjlcqVS6e7uif0xGExbW3tjfSdCAz2qCwMjhvr7Be7ZtxXzZWTkqJoa2c7dm3JzszMzBVu2ruFyeWH9BwEA/PwCAQA3fr0MAMjJybp8+bwmER7PoqysNCnpRWFhQUi7Dr4+/l9tW5eY+KygMP/O3ZszZ427fOV8vSrMBehRXaBQKAsXrsjJyTp1+kfsKdSuHQcKC/NnzBw7f+FUoFbv23PYyqoZAMDPN2DG9HknTh4dNKTHrj2b585dCgBQqVQAgD69Bzg7u0Ytn/PrzctUKnXH9m+9vH02fBk9ZerIk7ExEyfOGP05XJUcmON6T3/dLK+RgTa9rPEWYnBexVUgalXnQTaNuJbQwDgKITrQoxCiAz0KITrQoxCiAz0KITrQoxCiAz0KITrQoxCiAz0KITrQoxCiAz0KITrQoxCiAz0KITpmNw6fxaEqVWYx1ItGo9AZprATldnFUSt7euE7Cd4qjEFRtoRvQ8dbhR4wO4+6+nIUcpVahbcOwyMTK938OXir0ANm51EKFXQeaPPbyfd4CzEsv53Mbx9mbRq7TprdOHyMwizZtaMFbXvb8O0YHAsq3nL0hkykLC+qSfqjImySo0tzFt5y9IOZehQAIBUpn9+rLMySiqsa2FRTKKy2+GcqPY4IhUILCx4A9YVGnjXNzpnZtpcVz8p0WsPm69FGMm3atG+//ZbL5eItBKAoOmnSpNOnTzfiWpMCehRCdMyuzdR4Dh48KBAI8FZRl7y8vP379+OtwqhAj2rnu+++CwkJ8fEh3Dp1rq6uPXv23Lt3L95CjAcs6yFEB8bRuty9e/f27dt4q2iYe/fukUJn04Ee/RcvX75UKBT9+/fHW0jD9O7dm0KhPHv2DG8hBgeW9eRGpVIhCKLz3iakAMbRv0lJSZkwYQLeKj4ZCoUybdq0pKQkvIUYEOhRAAAQi8Xx8fGxsbF4C9GFH3/88enTpyKRqBHXkhJY1kOIDoyjYPny5aWlpXiraCoFBQUbN27EW4VBMPc4euzYse7du3t7e+MtRA+8evXq5cuXZKxV14+5exRCfMy3rL98+XJMTAzeKvTP1q1bX7x4gbcKfWKmHk1LSystLZ0xYwbeQvTPmjVrzpw5Y0rNfFjWQ4iOOcbR6OhoUwozWnn+/PmNGzfwVqEfzM6jGzZs+Pzzz3k8E9/asF27dvfu3bt//z7eQvQALOtNmby8PBcXF7I/zTejOJqTk3Px4kW8VRgVHo+XnJyMt4qmYi4eVSgUn3/++bBhw/AWYlSsrKyuXbv2888/4y2kSZhLWS+TyRgMhnnuZBwfH9+hQwc6nazr6piFRzMzMxEE8fLywlsIPqjVarVaTd7fp2E9KhQKDZd4IykpKXny5MmgQYN0TsHCwkKvinBg9erVPXr0CAsLw1uILhjWo8XFxYZLvJHI5XIGg6Hz7QiC2NnZ6VURDsjl8lWrVu3ZswdvIbpg+h5tIqbhUVJD1jpKY1AoFNXV1XirIBBnz56tqqrCW8UnY8oelclkJlCV1COOjo6bNm3CW8UnY8oetbCwQBDkypUrTWkwmRI9e/acPHky6coWEns0KytrypQpWk+pVCqpVGp0RSSgVatWlpb4r1P5SZDYo/UsGCYUCmk001mAU78sWLCAXCtHGM+jiYmJERERb9680RzJzMyMiIjA8uv169fLly8fNmzYsGHDVq1alZqail2zcePG2lPJ7t27FxERIZVKY2Nj9+7dW1xcHBERcenSpbS0tIiIiLS0NKzL2sLCYvbs2Zph9giCvH37duHChZGRkVOnTr13754mQYFAsHbt2jFjxowYMWLz5s1FRUVGyxC8mDt37q1bt/BW8QkYz6OtW7d2dHSs7Y+4uDgbG5u2bdvm5eWtWbPG1tZ27969e/fuZbFYq1evLikpqSe1kSNHRkZG2tnZnTlzJjw8vPap/z5TQRDk8OHDY8eO3bVrl7+//549e969e4d1ja1cuZJCoWzfvn3btm1CoXD16tVyuVz/X55IBAYGrl69Gm8Vn4DxPIogSP/+/R8+fKhQKLAj8fHxffr0oVAo169fZ7PZUVFRXl5eXl5e0dHRSqXy7t279aTGYrEYDAaCIHw+n8lkao7LZDKJpO7WNiiKjh07tnPnzn5+fgsWLKDRaL///jsA4MaNGwiCREdHe3p6+vn5LVu2rLCwMD4+3jAZQCAKCwufPHmCt4rGYtT6aL9+/SQSydOnT7EWT25ubt++fbECt3nz5poaJJvNdnFxyczM1OEjlEql1nXBW7Zsib3gcrkeHh55eXkAgNTUVD8/P814Z3t7e0dHx4yMjCZ8RXLg6Oi4ceNGsjxhMWrDwsbGJjQ09O7du126dImPjw8MDHR1dQUASCQSa2vr2ldyOJz/hsPG8LGF6zmcDzsVMZlMmUyGLaGTkZERGRmpOaVQKMrLy3X4XNKxc+fO3Nxce3t7vIU0jLEbv2FhYdu3b5dIJHFxcRpzcLlcsVhc+zKxWFzHtRgfqyxiQ83lcrlarcZe19TU1L5AJpOxWCzNaysrK8y4LVq0WLBgQe0r2Wx2k78lCQgODsZbQmMxdt9T+/btLSwsfvrpp8LCws8++ww76OvrKxAINPVUkUiUl5fn5+eH2aj2/LiPVQCwMFlZWYkZtKKiok441PQnSKXSvLw8d3d3AEBAQEB+fr6Tk5PbPyAIovW3YZKcOXMmJSUFbxUNY2yP0mi0vn37/vLLL507d9aUy4MGDaqpqdm/f39eXl5WVtbOnTu5XG6fPn0AAD4+Pmlpae/evVOr1QkJCbU79rhcbnl5eXJyclFRkZ2dnaWl5aNHj1AUFYlEhw4dqt1TTaPRzp49+/r164KCgiNHjigUip49ewIAwsPDpVLp3r17MzIy3r9/f+bMmTlz5mAdWOaAg4PDDz/8gLeKhqEadCGrOiU4BpvN/vXXX2fOnOno6IgdsbCwCA4OjouLi42NvX37tp2d3fLly7GzXl5eBQUFx48fv3DhgkwmGzx4cFxc3KhRoxgMhp2d3dOnTy9fvsxisdq1a+fh4XH79u3jx4/Hx8dHRkbm5uba2NiEhIS8efMmNTV10aJFBw8ePHXqlFAonDdvXqtWrbDpPu3atXv06NGZM2du3bolkUjmzZvXunXr2moRBCHC5kyGwMvLi8fjEX9SHg5j83744YenT58ePHhQjx+kUChQFDVEVRKOzcMdo5b1ubm5V65cuXDhwuTJk/WbslQqpVJNZ9tPo/HkyZNdu3bhraIBjBpHhw8fzuVysUdE+v0glUploPk6ph1HURTt1q3b48eP8RZSH3AcfgOYtkexTjoajUbkUojE4540iMVirE8eogNUKlWlUuGtoj5MwaMKhYK8k8dxJzU1dfr06XirqA9T8CifzydyUUVwWrRoUVlZSeSCyLD1URRFDZe4cUAQBP4A8IX065ScOnWqsrJy3rx5eAshMSKRCBsYjrcQ7ZC+rM/Ozsae7EN0JjExcd26dXir+Cikj6OQplNZWblgwYKTJ0/iLUQ7pPdoWVmZjY0N3iogBoTcZX1FRcXo0aPxVmEKlJeXE7ZpT26PFhUVOTg44K3CFDh27Ngvv/yCtwrtkNujAQEBp06dwluFKdC2bVvCrppB7vqoUqlUq9VwuQfThtxx9Ny5c19//TXeKkwBFEXfvn2LtwrtkNujTCbTw8MDbxWmAI1GmzZtWp2JigSB3KXkiBEj8JZgOvTv37+srMzZ2RlvIXUhd30UYg6Qu6zfvXv3hQsX8FZhImRnZ5eWluKtQgvk9iiKorBRry9u3rxJzB88LOshf/PHH39kZ2dPmDABbyF1IbdHCwsL2Ww2n8/HWwjEgJCyoOzbty827lgsFtPpdGz7JTabfenSJbylkRiJRKJZwohQkLI+am1tXVZWVlZWJpPJhEJhWVlZaWkp7ChtIhUVFcuWLcNbhRZI6dERI0bU2brOzs6OgBUpcmFjY0PAzlGy1kflcvnkyZPT09M1R7p27QofipoqpIyjDAZj6NChmlBqa2s7adIkvEWZAikpKQScJklKjwIAhg0bhq0hqlarg4KCQkJC8FZkCqxataqwsBBvFXUhq0cZDMbw4cOZTKatrS2sieqLVq1aETCONqI+qgYKuVoiJJx0lUo1Z84cDw8PAu7kogaAb0Mn9rKepKEBj75+VJ0UV1VVKmdzSdmTihcWzWj576Tu/tyQPlYuPqRZYP/9+/d8Pl+z0QpBqM+jT36tqChRtO5hzbOCBtUFYTkad6moQ5i1ZxA5bLpy5co+ffr069cPbyH/4qP10cc3ykVVyq6R9tCgOmNhTQuf5vLsTvm7ZC1rrhMQDw8PAq7upj2OVhQr/rxa1n2kIx6STA1UoX5wrmDYPCJ2j5MC7XG0NL+GhF37BIVGR6rL5NVlCryFNEx5eTkBd7fX7lFhBWrnyjK6GJPFxYdTUUKCrXJPnz5NwFn22uuaaI1KTtBFK0iJWKhUKfEW0Qjs7OwI+GwctocgHyDmwkRkfc4EMQQikYg09VGIeXL58uWYmBi8VdQFlvWQD/D5fK3bZ+IL9CjkA4MGDcJbghZgWQ/5ADb3Bm8VdYFx1KRQqVRNWcdBJpOhKNqURR7pdHqzZs10vl0rMI5CPkChUAi4TziMo5APMBiMOpMZiQCMo5APqNVqAj5ngh6FfEAul4tEIrxV1AV69AORw/qcOEm4HmxjgiAIhVLXEleuXMG3T8rgHr146aftOzc2eNm7dxljxuHcOTd39pJOnbrVfw0RdH4SWVlZU6ZMaeTFDAaDy+XWOdiqVSt8t7o0eJspLS1Fj5cZlLCwhs1HBJ2fhEAgaPzFWH20Tij19PT09PQ0gLTGoh+PLlw8g8lg7tp5QHNk3fplZeWlDAbj5cvnAIBbt64dOXzK18df6+3Hjh8+fuIoAKBXn9B5c5eGtOs4bcborZv3Hon5ls1iH/zfiYqK8oOH9z9//pdQWG1n5zB86Ojhw8dg9w4b0W/i+OlFxYX37t+SSiXBwW2XLV1rY2MLAEhKehHzw4F37wRKpbJ5c78Z0+a1bt0O2+/+2PHDt3+7LhIJfXz8Z32xsGXL1lhZP2L42EkTZ5z/+dTJ2O/Xrf3qwP/2FBUVWPGbTZk8KyxsUB2dI0eM00vuGY7Y2NjTp08DACIiImbOnDl06NCSkpKYmJgXL17IZDIXF5dRo0b17t0bAHDx4sWzZ88uXbo0JiamtLTUyspq/Pjxffv2xcr6I0eOXLt2Dcu6U6dO3b17VyQSNW/efNq0aUFBQYb+Fvrx6MDwoTt2fVlaWmJrawcAkEqlTxMezZ2ztHevsKhls11d3RcuiObxPrqt75jRk4UiYVzc/SOHTrFY7JKSIgDA8RNHRn8+0d8vCACwc/em3JysdWu+sra2eZWcuGfvVnsHx25de2KbDZw5d3za1DlnTl0tLy+bO3/yydiYxYtWSqXS1WsX9+4VFrVkjVqtvnT5p5WrF547e8PSwvLgoX337t9etHCFs7PrxUvnolfOjzl61tnJRaOHSqWJxaLz52P37DpoYWF56vQPO3Z9GRjYso5OvWSdQRk5cqRYLP7zzz+/+eYbFoulUCjWrl1Lo9HWrVtnbW19//793bt3czicTp06UalUsVh85cqVjRs32tnZnTt3bt++ff7+/m5ubrUTjImJefjw4Zw5c5ycnK5evbp27doDBw44OTkZ9Fvopz7ao0dfLpd7995N7O2jx3+o1erevcJ4PB6VRqMzGHy+VT27wLNYLCaDiSAIn2/FZDIBggAA2rQJDR8wxNvbBwAwb27Uzp0HWrdu5+bmEREe6dPcLyHhseZ2D3ev8AFDaDSavb1Dh/ZdUlPfAACKiwvFYnG/vhEeHl6ent7z5y3btvVrBp0hFouv37g0aeIXvXr28/cLjFqypn1o5/fvc+tIUqlUEyfMsLGxZTAYE8ZPZ7FYd+/drKuT8LBYLAaDgSAIn89nMpkJCQm5ublLly4NDg52cXGZMGFCUFDQlStXsItVKtW4ceNcXFwYDMaYMWOYTOaDBw9qpyaRSG7dujV27Nju3bv7+vouWLAgJCSkoKDA0N9CP3GUxWL17hV2+7froz+fCAB4+PDuZ916NXGadlBQsOY1m8U+ffZYYmJCVVWlSqUSCqtdXD78vr29fTWvLSwsq4XVAABXV3c3N4+t29YOGTwyNLSTr49/mzYhAIDXr5PkcnlgQAvsejqd/uXGnVoF+PoGaK5xcXb7r49Jh0AgYDKZ3t7emiM+Pj6///675q23t7dKpaJQKHQ63dnZOT8/v/bt2dnZcrlcs0ApnU5fs2aNEWTrrV0fETE0M1MgEKRKSMQZAAAgAElEQVTJZLInf8WHhQ1uYoJc7t8WR1E0euX8Z8+ezJm95H/fHT96+LTPv+u1dUIa9iyPSqV+sz+mR/e+169fnDV7wtjxg2/fvg4AEAqrAQBMZsOztVisD9ew2GyhiHCDLT4VsVjMYrFqP+3kcDgSiUTzlkKhaMbmsVisOuP0sOEmxi9A9Nau9/cL9PXxf/D7b76+AZaW/JB2HfSVckpKcmam4Ot9R1u1aosdqaqscHJseCqwlVWzObMXz5m9OCsr86fzsdt2bPDw9OZbNQMASCQNj5KUSqVs9t+VTolE7Ohg2FqXEeByuVKpVK1Wa2wqlUo5HI7mgpqaGk2VTCKR2Nvb174dW9Pd+NuK6rN/NDw88v6D3x48+K1/v4G1+y+a+HitRl4DALC0/HvR+9evkwoK8xtMM7/gfVzc39UpT0/vpUtWUyiUrHcZbq4eLBbrZdJz7JRKpVq05Itbt679N4WXL59hLyQSSU5Olpsbnv0vesHX11cul9fujUpJSfH3/1AovX37FusflUqleXl5dRpMrq6uLBbr1atX2FuVShUdHX3nzh1Dy9anR/v2DS8rK4mLf1C7oLfgWQgEqemC1Kqqynru5fEsyspKk5JeFBbWrYP7NPdjMBgXLp4tKyt9mvD4m293tg/tlJuXXVFRXk+CxUWFG76M/ul8bE5OVm5u9snYGAqFEhQUzOPxwgcMOXX6h9u3r6empezd91VaWkrL4DZ1bqdSqafPHnv1KjE3N3v/N9sBAH36DKhfJzHhcrnl5eXJyclFRUWhoaHu7u7ffPNNampqQUHBsWPH0tLShg4dil1JpVLPnz+fnJycl5d34MABAEDPnj3rJNWvX79z587dvXs3PT3922+/FQgELVq0MPRX0KdHLXgWbdqEBga2dK3VoBk2bExpacnCRdNT6+397tN7gLOza9TyOb/evFznlJVVs+jlG54+fTR+YuTJ2JgV0RtHjBhXWJi/dNnsehJs0yZkxfINt3+7PmvOhDnzJiU8e7L5y91ubh4AgFkzF4WHRx468vXiJV9kvhNs2/q1i7Prf1OYOWPBdwd2T5sxOvlV4uYvd2PXaHTevHXl03MIB3r27Onk5LR69erbt2/TaLTNmzc7OTmtXbt21qxZz58/X7duXZs2H36f48ePP3jw4Ny5c1+/fr127dr/dipNmzYtLCzs+++/X7FiRVZW1saNGw3d8fTRtXT+ulleIwNtell/UlqVlRXjJgyJXr6hZ4+++lOIAxcunjvwvz13f/tLXwneO1vQqpulV4u6jxn1js5jnLGO+gsXLigUiv8+Dm08hhjjrJ82U1V1Vf773O/+t8fDw7v7Z731kibE+BBz/Kh+PHrr1tWjMd+1btVu+bL1/x04g7FqzeLk5EStpwZGDJs9a5FelECaAlaoEm0ovj7L+vopKyuVK7SvecThcPmWprxXHfHLegxsPlNTHr4Qt6xvDNg4DwiRoVAoHysGcQTOZ4J8wJTroxCCgCBIU2qTKpVKrVbXM/qnQQwRhqFHTQoEQezs7HS+PTY2tqSkZMmSJXoV1VSgRyEf4HK5KpUKbxV1gR6FfGDYsGF4S9AC4RpxEBwRiUQEXDcPehTygR9//PH8+fN4q6gL9CjkA3Q63crKCm8VdYH1UcgHZs+ubygZXmiPoww2hcGCIVZvcC1pVCqxHoJrpaqqSiYj3IYy2o1o2YxelGPsKQEmTG6q2NqRcM9v/suGDRuePn2Kt4q6aPeovTuTYGNfSIxMorJxYpJi21U+n6/3ESFN56P7Lif+XvleIINbhjadq4dye4+2c/SE+wbqSH17g6c8EaYmCIN7WFvZMWD19FORCpXV5Yr4y0UDpznZupCgoMem4Hl7exNteYv6PAoAyE6RvHxYWZglU6KEWzqVsGNyAQBWdnSpSOkewG3fvxnflnC7bX+MXr16Xb582dLSEm8h/6KBSpJHIMcjkAMAUCqI6NHt27cHBQUNGTIEbyF1UQFApxPul9MgNjY2RDPoJ/SPUgmZ42pECSgqAmrTfXAbrvz88894S9ACrGVC/gZF0bKyMrxVaIHcHsWWg8NbhYnw/PnztWvX4q1CC+T2aFVVVU1NDd4qTARs2Vu8VWiBBB3L9WBnZ0fA+TckpXfv3tiazkSD3HFUJBJVVVXhrcJEqKioIODGN6T3KIyjemTNmjWvX7/GW4UWyO1RlUplhLWuzQQOh+Pj44O3Ci2Quz7arFmzpizLAanN7t278ZagHXLHUSsrqzprtkN0QywWJyUl4a1CO+T2qIODQ1FREd4qTIF79+5duHABbxXaIbdHnZycbGxs8FZhCojF4m7dGtiHEi/IXR/l8/lpaWklJSVNWZwDAgAYM2YM3hI+CrnjKLYPQXp6Ot4qSM+zZ8/wlvBRSO/R0NDQ7OxsvFWQm2fPnh0+fBhvFR+F9B4NCgqqvVMbRAfKyspGjBiBt4qP0sA4fFIQGhqakJCAtwqIoSB9HAUAhIeHP3nyBG8VZKWmpoaA6+fUxhQ82qVLl6tXr+KtgqxcvXo1IyMDbxX1YQplPSzum0JcXFxgYCCRu5lNxKO7d+8OCAgYNGgQ3kIg+scUynqsCzomJgZvFeTj+vXrDx8+xFtFA5iIR11dXf39/Y2wB7CJsXHjRsI+AtVgImU9ACAnJ2ft2rUnTpzAWwhpqKyslMvldTapJyAmEkcBAO7u7u3atTt58iTeQkgDh8MhvkFNKo5i9OjR4/r1603ZTdBMOHbsmFAoXLBgAd5CGsZ04ijG9u3b161bh7cKoqNUKgUCASkMaoJxFACwZ88eJyencePG4S0Eoh9MLY4CAKKiou7fv5+VlYW3EIKSl5dHrlq7CcZRAIBEIgkLC/vjjz/wFkJEwsPDjx8/TorWEoZpehQAkJSUtG/fvh9//BFvIcRCJBJRKBQOh4O3kE/AZD2KPUTJzc0l5n4uuFBZWVlUVOTv74+3kE/DBOujGgYOHEihUIg8wtyYVFdXDxs2jHQGNXGPAgBmzpxZUVFB8PGRxiEnJ+fXX3/FW4UumLhHAQArV67MyMi4e/cu3kLwpLCw0MvLi8Ui5d4mpu9RzKZ37ty5ceMG3kLw4auvvoqPj+dyuXgL0RFTbjPV4dy5c2KxeNq0aXgLMSrp6ekIghBzsbFGYhZxFGP06NGZmZm//PIL3kKMx82bN319fUltUPPyKABgy5Ytqampp0+fxluIMYiLizONBYTNy6MAgNWrV4vF4j179uAtxODIZLLRo0fjrUIPmJ1HAQBffPGFk5PTjh078BZiKI4ePQoA6Nu3L95C9IM5ehQAMG7cuNDQ0FmzZmmOhIaGfvHFF7iK0pG5c+eGhIRo3p4/f97X1xdXRXrGTD0KAOjTp8+cOXMGDx4MAOjatSsA4P3792/evMFb16eRnp6enZ2NIEinTp2wI+3bt+/ZsyfeuvSJ+XoUANCmTZvDhw+HhIRgmzwVFRVdunQJb1Gfxq1btwoLC7Fd6tq3bw8A8PT0xFuUnjFrjwIApk6dqtm2GUGQp0+fEnP/F60olcrffvtNo1+tVptMHbQ2Zu3RwYMH19khs6Sk5N69e/gp+jTu3r1bUVFR+0hlZSUBd6FuImbtUT6f7+HhwWKxNA/bZDLZ5cuX8dbVWC5duiSRSDRvmUymq6srucaGNgbDrDWuBoBw23VrITY29vXr12/evElISMjOzhYKhSUlJTk5OcnJyS1btsRbXQOkpKQIBAIAgL29PYvF8vX1DQkJCQoKIr7yv2m0SfT5vF4qUj75tTxPIAEAEZYr9JWs0VD/A5VKjv3nlUolggEQUgSF2vD4NIQCXJpz2oc141nVFyv15tGKYsUvX+d1HmLPt6HzrOnAXEaqQHQFAaIKtLpM/vh6yZBZzrbOH91TUz8eLc6tuXW8aOgC96YnBTFDrh7K6THCzsWHrfWsftpMj2+Uh0110UtSEDMkfKrb01sVHzurB49Wl6PlhTVsHjnqcBACQmMioiq0vFCu9awePFpeIHcPJOsYbwhBcPXjVBRpb2frwaMoqpJUK5ueDsSckYqUqEKl9ZRZ9+FDSAH0KIToQI9CiA70KIToQI9CiA70KIToQI9CiA70KIToQI9CiA70KIToQI9CiA70KIToQI/qkw0bo6OWzfnUU5D6gR79wMVLP23fuRFvFTjz7l3GmHGDmpjI0OF9Cwrz9aQIerQWaWkpeEvAn6ZnQlFRYVVVpZ7kAIPNXW4IFEX/d3Dvnbs3lUq0+2d9unbpsW7Dsgs/327WzBpF0dhT39+7f7uoqMDOzmHUyPGRQ0Zidw0b0W/i+OlFxYX37t+SSiXBwW2XLV1rY2MLAKisrPjfoX0vXz6rqqr09vb9Ysb8tm1CsagwbcborZv3Hon5ls1iH/zfiYqK8oOH9z9//pdQWG1n5zB86Ojhw8cAABYvnfny5XMAwK1b144cPuXr45+W/jYm5rvUtBQUVbRr22He3ChHR6cGvxqCIDd+vXzyZExZeam3l8/SpWv8fAPqXFNcXHTw0L5nz55IZVI3N4+xoyf36xeBnbp67cKp0z9UVJQHBQYvWbxq8tSR69dt69WzX/0fmpKSfPDw/rS0FEtLfu9eYdOmzmEwGACAV68Sj37/XVpaCoIggQEtv/hiQWBACwDAl5tWAgA6dOhy+syxsrISN1ePRQtXBAUFHzt++PiJowCAXn1C581dOnLEuI9lwuUrP/947NC2rfu/+W5Xbm6WpQV/woTpEeGRLxITlkbNBgCMGz+ka9ceWzbpYQ1NfOLoz7+cvnrtwswvFhw8cMLW1u7Qka8BABQKBQBw6PDX5346OX7s1O9jzo0aOf67A7uv3/h7DSYajXbm3HFPT+8zp67+EPNTevrbk7ExAACVSrVi5YLXr5NWRG88fDA2wD9o5aqFmZkCAACdTgcAHD9xZPTnE5cvWw8A2Ll705vXSevWfBVz5My4sVMOHNwbF/8AALBl014/34DevfpfunDH28unqKhwadQshELZt+fwnt2HqoVVUcvnyOXaJzPUJjvn3d27N1et3LRrxwG5Qr523VKF4l/DyxUKxfIV83Lzsjdv2vPj9z91/6z3V9vXx8f/DgBIeft6776vunTpcfTw6fABQzZvWY2Zvv5PLCjMXxY919nJde/uQwvmL7956+rBQ/sAALm52cui59rZ2h/49th33/zI5nCWLZ9TXFwEAKDSaK+SE1NSko8cOnXh59/4fKsdu74EAIwZPXn48DH29g6XLtwZPGhEPZlAo9HEYtGJ2JgvN+y8evlB//4D9+3fVlJSHNyyzfp12wAAhw/FrlqxqWk2+Rt8PHrr9rVuXXsOGjjM3d1z+rS5DvaO2HGRSHT5yvnRn08MCxvk6uIWOWRkWP9Bp88c09zo4e4VPmAIjUazt3fo0L5LauobAEDCsydp6W+XRa1t17a9h4fX/HnLHBycLlw8CwAACAIAaNMmNHzAEG9vHwDAvLlRO3ceaN26nZubR0R4pE9zv4SExwAAHo9HpdHoDAafb0WlUq9c/RlBkLVrtnp7+wT4B61eubmg4P3vDxvenKSysmLDhh2tWrVt3brdnNlLSkqKE18+q33BkyfxOTlZK6I3tm7dztXVfcrkWS1btr546RwA4Pbta82aWc+bs9Td3bN//4Gffda7MZl5/fpFBoO5fNm6oKDgz7r1mjt7CfaruHzlZzabs2rlpubNfZs3912zaguKorduX8Puksmkc+csZbPZLBarb5/wnJwsmUzGYrGYDCaCIHy+FZPJrD8TUBQdN2aKvb0DgiDhAyJRFM3ISKPRaBwOFwBgYWGpr10icPCoWq3Oy8tp2aK15ki3br2wFxkZaSiKhoZ00pxq3TokPz9Ps2KMt/eHlTUtLCyrhdVYSUen09u0/nsNTgqF0iq4rUCQqrkyKChY85rNYv9y4cz0L8aM/HzA8JH9M98Jqqu1LMidkpIc4N/CgmeBvXVwcHRycqmd5sfw9vKxtLD8+3MDgwEAOTn/2l03XfCWyWT6NPfTHPHzCxRkpGFXtghqpVmB4rN/sqV+0tJS/HwDNHf17z9wWdRaAEBaeoqfbwCN9nd1jsPhuLl5ZGSkYW9dnN00W+FYWFgCAITC6k/NBM2/4+8URMLGCP5UcKiPSqVSFEXZtZYlsrTkYy8kEjEAYEnUrNprwQEAyivKsGWMmExm7aSQf+5SKBRh4V00x5VKpbW1jeYtl8vDXqAoGr1yvlKpnD9vmbubJ5VKXbs+SqtIsViULkjtP6Cz5ohCoSgrL23w22k+CwDAZrMBADU1stoXiMQiFotduwTncrjYF6+urrKxtftvttSPUFht/09BVBuJRGxjbVv7COefDwIAMP6dk5qsrk2DmVDn3wEMs0cNDh7Fftky2Yf/nOYXjP2D16ze4u31r60w7O0c6kmQy+UxGIyjh/+1EwNWu61DSkpyZqbg631HW7Vqix2pqqxwcnTWmmZwcJuoJWtqH2SzG17uSyqTal5j4Z/F+tfSBjwuTyqVqNVqjU3FEjH2xekMRo22bKkfvlUzjfPqfAWx+F/rVIrFojqurR+dM0G/4FDWMxgMe3uHt6mvNUfi4u5jL7y9fel0ekVFubu7J/Znacnn862wVurHCAhoIZfLlUql5i4Gg2lrq2Xv6xp5Te349Pp1UkFhfu34oXkdGNjy/ftcZ2dXTZoIgmB9CPWTlZWhWcE0Ne0NAMDT07v2Bf5+QXK5PC39rebIm9dJAQEtAACuru6paW80Gv74J1vqx9fHP+VtMrbMLwDg9u3rCxfPUKlU/n5BqWkpmhabUCTMycnCPqiR6JwJWqOyzuDTZurRve/vv9+5d//2+/y8Y8cPl5QWY8d5PN6gQcOPHT987/7t/IL3LxITlkXPbbBfPaRdB18f/6+2rUtMfFZQmH/n7s2Zs8ZdvqJlj1Cf5n4MBuPCxbNlZaVPEx5/8+3O9qGdcvOyKyrKAQAWPAuBIDVdkFpVVTl40AipVLJj58Z0QWpeXs6JkzFTp3/+9u1rbZ//Lzgc7q7dm7KyMjMzBTHfH3B0cGoV3Lb2BR06dPHw8NqzZ0vK29fv8/OOxnz3NvXNqJHjAQA9u/ctKir88dih/IL3d+7e/PPRw8Zk5qCBw1EU3frV2uTkl3FxDw4f/cbD3YtCoURGjqqpke3cvSk3NzszU7Bl6xoulxfWv4H+eR7PoqysNCnpRWFhgW6ZgFXHHz+Oy8rKbIz+BsHHo1OnzO7+We9duzfNmz9FKBJOGDcNAECj0QEAc2cvGRo56sjRbyZPGbF9x4bglm3WrNpSf2pUKnXH9m+9vH02fBk9ZerIk7ExEyfOGP35xP9eaWXVLHr5hqdPH42fGHkyNmZF9MYRI8YVFuYvXTYbADBs2JjS0pKFi6anpqU4Ojrt3XO4vLxs4aLps+dO/Ovpn1s2763d9tIKqkRbBLUKCem4cvXCWXMmIAiyZfNeTasFg0aj7dz+nbOza/SKeVOmjkxIeLz5y93t2rYHAHTp0n3a1DlXr12Y8cWYu/duLl2yGgDAZNStONbBwcFxx7ZvS0qLo5bP+frbHT179ps3NwoA4OLsumvHgcLC/Bkzx85fOBWo1fv2HLayalZ/an16D3B2do1aPufXm5d1ywQ/v8AOHbocPLTvm2931n9lI9HDmmSCl6K3T0U9Rmmptn8MFEVFIqEmv06cjLlw8eylC3eaqITsqNXq8vIyTWGalPRi0ZIvfog55+XVHG9pBifuYpF3S45/qMV/T+ETR0+d/nHchCEPfr/zPj8vLv7BhYtnGyyDzIGXL5+P/HzAiZMxeXk5yckv/3dwb0BAizrVWTMEn2eh48dNlctrDh3eX15eZm/nMDBi6KSJ5NgbaXDkR7eVWRn9ZdeuPZqSeJs2IatWfHnu/MnTZ37k8SzatA6ZNXMRgiCr1ixOTk7UesvAiGGzZy1qyocSH3zKevJSTzc1m8WuU/XUFxKJRKnSvqIWnUYn6a70dainrMcnjpIXzUMXY2J62zB8EnBsHoToQI9CiA70KIToQI9CiA70KIToQI9CiA70KIToQI9CiI4ePEqhICwu3JwJ0iSYXCqFqn12oR48yrelF2VJG3EhBPJRinOkljZ0raf04NFmDgwWl2qYqSwQc4FOp9g4aJ9toZeyHgR1svz9p8KmJwUxT+IuFPm249GY2st6ve0N/uaJMP2FqGukPZMD66aQxlIjUT2+Xuzux2nV3fJj1+jNowAAQaLo5R9VFUVyB3e2VIjqK1kTQKVWAbX2qapmC5NDLc2X8W3pwV35WofkadCnRzGkImVVKQoArJ9+4OrVq3K5fMSIEXgLIRaW1nSOBRU0sFaQAcaPsnlUuE94HSicaoRa4+hpCoORjQ8sfSBEB47DNwY0Gk2l0r7xNaRBYBw1BiiK1lnhEdJ4YBw1BjweD1sJFaID0KPGQCQSadZjgnwq0KPGgM021LRmcwBmnDGQSqUwjuoMbDNBiA70qDGgUqmwrNcZ6FFjoFQqURQOYNAR+OM2BhwOB8ZRnYEZZwwkEglsM+kMLOshRAfGUWPA5XLr33YCUg/Qo8ZALBbDsl5nYFkPITowjhoDNpsNJ4roDPSoMYDPQpsC/HFDiA6Mo8YANuqbAoyjxkAul8OyXmegRyFEB3rUGFCpVNiu1xmYccZAqVTCeaE6A9tMxgDOXW4KMI4aAzh3uSlAj0KIDizrjQGcX98UoEeNAZxf3xRgWQ8hOjCOGgM47qkpQI8aAzjuqSlAjxoDOC+0KcCMMwZwXmhTgJUkY0ChUGB9VGdgxhkDlUoFn4XqDPSokUCQhrbPgHwE6FEjofc9hswH2GYyBrB/tClAjxoD2D/aFPS/zx1Ew9ChQ3NycjQ1UbVajSCIi4vLlStX8JZGJmABZEAiIyMZDAbyDxQKBUGQAQMG4K2LZECPGpDhw4e7ubnVPuLh4TFq1Cj8FJES6FEDwufzBw4cWLvXqVevXnZ2driKIh/Qo4ZlxIgRLi4u2Gs3N7fRo0fjrYh8QI8aFgsLi/DwcCyU9uvXDwZRHYAeNTjjxo1zdXV1d3cfOXIk3lpICex7+gAqV2e9kRTnyUSVSnEVSqECqUg/D9nLy8rUANjY2OglNSaHqlareXwaj0+1c2V6BHIYLFOONdCjAACQ8pcw+VF1Sa7M2pVHodPoTCqNSaPRqcTMHARBUIUSrUHRGqVKqSzPE9o4MVt2tgzqZIm3NINg7h5Nfy7643Ip35HHtGTzrFl4y9ERcblMJpRV5FV3i7QNaG+Btxw9Y74eVavAlZgiUZXKrrk1g20Kz4QVMmVxRjmXByJnOiImVPibqUclQuXJrdnurZ3YVqa2MqhUKH/3NH/CKg9La1P44ZmpR2ukytM78tzbOVPpJhRtaqFSqrOevh8b7crmUvHWogdM859UD0pUHbP2nVdHV1M1KACAQkW8O7me2JwtE5vC4H+T/T99jJNf5fh0dsVbhTFo3sk1dls23ir0gHmV9X9cLK2sZljYc/EWYiSEpRIuQ9Z7NLkfbplRHK0sUaQnis3HoAAAC1tOTpq0JI/cw6vNyKMPL5baelvjrcLY2HpZP7xQireKJmEuHi0vVIirgaU9B28h2hGLK5et6/gy+a7eU+bZsBUKSlEOiUOpuXg045WQyjTTFUCpLEZGkghvFbpjLh4VJIp5tgQNoobGwo6TkSTGW4XumMijiPqRiVVUOpVjxTRQ+iJxxdVfv87Iei6WVDo5+Eb0m+vjHQIA+POvX27dPTJtwp7LN/YWl2RxOPw+PaZ2DBmC3fXorwt3Hx4TiStcnQIG9JttIG0AAJYFg8mhiypRnhUp/92kFP2piKtRcTVqoMRVKtXR44tlNaLRw9db8mz+/OuXmJOLF8360cnRh0qhyWSiO7//MGnMNr6l/e37MReu7vD36WTFt8/MevHL1R3du4zrFDq0rOL91V+/MZA8DKkIlVQrSepRsyjrxVUonWmop4LpGX+9L3g7KnK1r3eog71XZMTSZlZOcY9/ws4qVWivzyZZ8R0QBOnQbrBSieYXpgMAniX+asGzGdh/vr2dR6Bflx7dxhlIHgaNQRVVGepXamjMwqNSkZLBMdTYkey8ZCqV3tyrHfaWQqF4e7R5X5CmucDZwRd7wWFbAgBkMiEAoKgky9UlgEr9+5fj7trCQPIwGByGTKI06EcYDlIG/0+FQkPQGkNFkZoaiVKpWPnlZ5ojKpXSgvdhyD2d/q96MPZgr6ZGbGnx4RoGnW0geRiKGpRCMVR13NCYhUe5ljRUbqgowmJxaTTG0rknax9EGhq/yWCwZbIP/UFSmdBA8jCUciXXkqxjoMzEo1SFzFBx1N2lBYrKlSqlk0Nz7Eh5RQGP26z+u+xs3N8KHqlUKmytsvSMvwwkD0NRo+RYkvV/bRb1Ub4NnUJF1IYZp+bj3d7Fyf/MzxsF756VV+Q/f3lr3/8m/vnXz/Xf1bZ1mEhUfuXX/QVFgqTX9xNe3DCIuH9Qq1TWjmQdzU3W39angQB7N2Z1sZjvqP8BJVQqdcak/ddufnPi7Cq5XGpt5dy357QeXRtop/v7dBwSvvhBXOyjpxdcnQNGRa7ad3CSgcagCUskts5M8q7Ray5j89KeCRMeiJyD7PEWggOFb0uDO7FbdCbrrFGzKOsBAL5tLNQoWTtfmohKgfq04eGtQnfMo6wHAKECv7acrPQKO2/trRkFKv9yR7jWUygqp1HpQFth6WDntWBmjB51rt3a52OnVEqUQtXy/2rGd4yaf+pjd5VlV3oGsphsEgcjcynrMQ6tyPDr5k6hafmHqdXqisoCrXfJZCIGg6N1sXAqlc631Oco9/KK/I+dkitqGHQtfZwUCtWK76D9HjVI/u3d/H0+elRofMzLo+kvRK/+klq7m8tI54rcCv/WjKCOZK2JYpC4CNAB37Y8e0ekPKcSbyHGoCKvms9Xk92gZln0au4AAAEwSURBVOdRAEC3SFsmHS3NqsZbiGEpzxNSlKSfbYdhdh4FAAyc5sCiy0uzqvAWYijKc6vVNZLI2U54C9EP5lUfrc2Dn0tLi9TW7s0oNNL2bv8HtUpdll3ZzFrdZ4wpRFAM8/UoAODtM9H9c0V2Hnzbj3RIkYvSdxXFmVW9PrcP7GBSS+eZtUcxnt6uSH8pptCobCuupT2XZCvOqUFVsVhWKQEqpUcAu1OECXZZQI8CAIBaCdIThYIkcXFOjVKppjNpFDqVzqShKBHXS6LSKEo5qlQoFTVKGh2xdaI3b8XzaW1BI+ugkQaAHv03alBVphBXK8XVqEKmUiqJmDk0GkJjULiWVI4ljW9LJ+9gkUYCPQohOuSqfEHMEehRCNGBHoUQHehRCNGBHoUQHehRCNH5PzRh6ec4G1fuAAAAAElFTkSuQmCC",
"text/plain": [
"<IPython.core.display.Image object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from langgraph.graph import START, END, StateGraph\n",
"\n",
"from IPython.display import Image, display\n",
"\n",
"\n",
"graph_builder = StateGraph(State)\n",
"\n",
"graph_builder.add_node(\"Router\", router)\n",
"graph_builder.add_node(\"yt_transcipt\", yt_transcipt)\n",
"graph_builder.add_node(\"generate_blog_content\", generate_blog_content)\n",
"\n",
"graph_builder.add_edge(START, \"Router\")\n",
"graph_builder.add_conditional_edges(\n",
" \"Router\",\n",
" route_decision,\n",
" {\"youtube\": \"yt_transcipt\", \"topic\": \"generate_blog_content\"},\n",
")\n",
"\n",
"graph_builder.add_edge(\"yt_transcipt\", \"generate_blog_content\")\n",
"\n",
"graph_builder.add_edge(\"generate_blog_content\", END)\n",
"\n",
"graph = graph_builder.compile()\n",
"\n",
"display(Image(graph.get_graph().draw_mermaid_png()))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Invoke Graph"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Node Called : router \n",
" {'user_message': 'Langgraph'}\n",
"Decision : step='topic'\n",
"state : {'user_message': 'Langgraph', 'decision': 'topic'}\n",
"### blog_content : title='Mastering Langgraph: A Comprehensive Guide' content=\"Langgraph, a lesser-known but powerful tool in the world of language processing and graph theory, is making waves by offering innovative solutions to complex data analysis problems. In this blog post, we will explore what Langgraph is, how it works, its key features, and how it can be applied in real-world scenarios. \\n\\n### What is Langgraph?\\n\\nLanggraph is an advanced software designed to analyze the structure and relationships within language data, using graph theory principles. By representing language data as a network of nodes and edges, Langgraph helps researchers, data scientists, and developers visualize, analyze, and manipulate linguistic information. This makes it an invaluable tool for understanding the complex patterns and connections inherent in human language.\\n\\n### How Does Langgraph Work?\\n\\nAt its core, Langgraph converts textual data into a graph format, where each node represents a word or phrase, and edges represent relationships or connections between these nodes. These relationships can be based on syntactic, semantic, or even phonetic similarities. Once the data is transformed into a graph, users can apply various graph algorithms and analysis techniques to extract insights and patterns.\\n\\n### Key Features of Langgraph\\n\\n1. **Scalability**: Langgraph is designed to handle large datasets, making it suitable for big data applications.\\n2. **Interactivity**: It offers a user-friendly interface that allows users to interact with the graph data and explore relationships in real-time.\\n3. **Customizability**: Users can define their own graph structures and algorithms, catering to specific research or business needs.\\n4. **Integration**: Langgraph can be easily integrated into existing data processing pipelines and can work with various data formats, including text, audio, and even video.\\n5. **Visualization**: With advanced visualization tools, users can create detailed and interactive visual representations of their data, making it easier to understand complex relationships.\\n\\n### Real-World Applications of Langgraph\\n\\nLanggraph's capabilities make it suitable for a wide range of applications, from academic research to business intelligence. Here are a few examples:\\n\\n- **Academic Research**: Researchers can use Langgraph to uncover patterns in language evolution, comparative linguistics, and more.\\n- **Business Intelligence**: Companies can leverage Langgraph to analyze customer feedback, social media trends, and more to gain insights into consumer behavior.\\n- **Social Media Analysis**: Langgraph can help in understanding the spread of information and the influence of different entities in social media networks.\\n- **Natural Language Processing (NLP)**: Langgraph can play a significant role in NLP tasks such as sentiment analysis, topic modeling, and machine translation.\\n\\n### Conclusion\\n\\nLanggraph stands out as a cutting-edge tool for anyone interested in language data analysis and graph theory. Its unique approach to analyzing language through the lens of graph theory opens up new possibilities for understanding and utilizing linguistic data. Whether you are a researcher, a data scientist, or a business analyst, learning to harness the power of Langgraph can provide you with valuable insights and a competitive edge in your field.\"\n"
]
}
],
"source": [
"messages = graph.invoke({\"user_message\": \"Langgraph\"})"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|