File size: 3,976 Bytes
4d9dd77
cb0039e
 
 
 
f5b6e30
cb0039e
4d9dd77
cb0039e
f5b6e30
 
cb0039e
4d9dd77
f5b6e30
 
4d9dd77
f5b6e30
cb0039e
 
 
 
 
 
a055f19
cb0039e
a055f19
cb0039e
 
f5b6e30
 
 
cb0039e
f5b6e30
 
cb0039e
f5b6e30
 
 
 
 
 
 
 
 
 
 
 
 
 
cb0039e
f5b6e30
 
 
 
 
 
 
 
 
 
 
cb0039e
 
 
 
f5b6e30
cb0039e
 
 
 
 
 
 
f5b6e30
 
cb0039e
 
 
f5b6e30
 
cb0039e
f5b6e30
 
cb0039e
f5b6e30
 
cb0039e
 
f5b6e30
cb0039e
 
f5b6e30
 
cb0039e
 
 
 
 
 
 
a055f19
f5b6e30
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import streamlit as st
import pandas as pd
import re
import json
import transformers
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, Trainer

st.set_page_config(
    page_title="Named Entity Recognition Wolof",
    page_icon="πŸ“˜"
)

def convert_df(df: pd.DataFrame):
    return df.to_csv(index=False).encode('utf-8')

def convert_json(df: pd.DataFrame):
    result = df.to_json(orient="index")
    parsed = json.loads(result)
    json_string = json.dumps(parsed)
    return json_string

def load_model():
    model = AutoModelForTokenClassification.from_pretrained("vonewman/wolof-finetuned-ner")
    trainer = Trainer(model=model)
    tokenizer = AutoTokenizer.from_pretrained("vonewman/wolof-finetuned-ner")
    return trainer, model, tokenizer

def predict_ner_labels(model, tokenizer, sentence):
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")

    if use_cuda:
        model = model.cuda()

    text = tokenizer(sentence, padding='max_length', max_length=218, truncation=True, return_tensors="pt")
    mask = text['attention_mask'].to(device)
    input_id = text['input_ids'].to(device)
    label_ids = torch.Tensor(align_word_ids(sentence)).unsqueeze(0).to(device)

    logits = model(input_id, mask, None)
    logits_clean = logits[0][label_ids != -100]

    predictions = logits_clean.argmax(dim=1).tolist()
    prediction_label = [id2tag[i] for i in predictions]

    return prediction_label

id2tag = {0: 'O', 1: 'B-LOC', 2: 'B-PER', 3: 'I-PER', 4: 'B-ORG', 5: 'I-DATE', 6: 'B-DATE', 7: 'I-ORG', 8: 'I-LOC'}

def tag_sentence(text):
    trainer, model, tokenizer = load_model()
    predictions = predict_ner_labels(model, tokenizer, text)
    df = pd.DataFrame(predictions, columns=['tag'])
    df['word'] = text.split()
    df['probability'] = 100.0  # Vous pouvez ajuster cette valeur selon vos besoins
    return df

st.title("πŸ“˜ Named Entity Recognition Wolof")

with st.form(key='my_form'):
    x1 = st.text_input(label='Enter a sentence:', max_chars=250)
    submit_button = st.form_submit_button(label='🏷️ Create tags')

if submit_button:
    if re.sub('\s+', '', x1) == '':
        st.error('Please enter a non-empty sentence.')
    elif re.match(r'\A\s*\w+\s*\Z', x1):
        st.error("Please enter a sentence with at least one word")
    else:
        st.markdown("### Tagged Sentence")
        st.header("")

        results = tag_sentence(x1)

        cs, c1, c2, c3, cLast = st.columns([0.75, 1.5, 1.5, 1.5, 0.75])

        with c1:
            csvbutton = st.download_button(label="πŸ“₯ Download .csv", data=convert_df(results),
                                           file_name="results.csv", mime='text/csv', key='csv')
        with c2:
            textbutton = st.download_button(label="πŸ“₯ Download .txt", data=convert_df(results),
                                            file_name="results.text", mime='text/plain', key='text')
        with c3:
            jsonbutton = st.download_button(label="πŸ“₯ Download .json", data=convert_json(results),
                                            file_name="results.json", mime='application/json', key='json')

        st.header("")

        c1, c2, c3 = st.columns([1, 3, 1])

        with c2:
            st.table(results.style.background_gradient(subset=['probability']).format(precision=2))

st.header("")
st.header("")
st.header("")
with st.expander("ℹ️ - About this app", expanded=True):
    st.write(
        """     
-   The **Named Entity Recognition Wolof** app is a tool that performs named entity recognition in Wolof.
-   The available entities are: *corporation*, *location*, *person*, and *date*.
-   The app uses the [XLMRoberta model](https://huggingface.co/xlm-roberta-base), fine-tuned on the [masakhaNER](https://huggingface.co/datasets/masakhane/masakhaner2) dataset.
-   The model uses the **byte-level BPE tokenizer**. Each sentence is first tokenized.
        """
    )