File size: 20,108 Bytes
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc73bbd
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b60b305
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e105ab9
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import math
# import segm.utils.torch as ptu
# from segm.engine import seg2rgb
from collections import namedtuple

import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import trunc_normal_

import torch

CityscapesClass = namedtuple('CityscapesClass', ['name', 'id', 'train_id', 'category', 'category_id',
                                                 'has_instances', 'ignore_in_eval', 'color'])

classes = [
    CityscapesClass('unlabeled', 0, 255, 'void', 0, False, True, (0, 0, 0)),
    CityscapesClass('ego vehicle', 1, 255, 'void', 0, False, True, (0, 0, 0)),
    CityscapesClass('rectification border', 2, 255, 'void', 0, False, True, (0, 0, 0)),
    CityscapesClass('out of roi', 3, 255, 'void', 0, False, True, (0, 0, 0)),
    CityscapesClass('static', 4, 255, 'void', 0, False, True, (0, 0, 0)),
    CityscapesClass('dynamic', 5, 255, 'void', 0, False, True, (111, 74, 0)),
    CityscapesClass('ground', 6, 255, 'void', 0, False, True, (81, 0, 81)),
    CityscapesClass('road', 7, 0, 'flat', 1, False, False, (128, 64, 128)),
    CityscapesClass('sidewalk', 8, 1, 'flat', 1, False, False, (244, 35, 232)),
    CityscapesClass('parking', 9, 255, 'flat', 1, False, True, (250, 170, 160)),
    CityscapesClass('rail track', 10, 255, 'flat', 1, False, True, (230, 150, 140)),
    CityscapesClass('building', 11, 2, 'construction', 2, False, False, (70, 70, 70)),
    CityscapesClass('wall', 12, 3, 'construction', 2, False, False, (102, 102, 156)),
    CityscapesClass('fence', 13, 4, 'construction', 2, False, False, (190, 153, 153)),
    CityscapesClass('guard rail', 14, 255, 'construction', 2, False, True, (180, 165, 180)),
    CityscapesClass('bridge', 15, 255, 'construction', 2, False, True, (150, 100, 100)),
    CityscapesClass('tunnel', 16, 255, 'construction', 2, False, True, (150, 120, 90)),
    CityscapesClass('pole', 17, 5, 'object', 3, False, False, (153, 153, 153)),
    CityscapesClass('polegroup', 18, 255, 'object', 3, False, True, (153, 153, 153)),
    CityscapesClass('traffic light', 19, 6, 'object', 3, False, False, (250, 170, 30)),
    CityscapesClass('traffic sign', 20, 7, 'object', 3, False, False, (220, 220, 0)),
    CityscapesClass('vegetation', 21, 8, 'nature', 4, False, False, (107, 142, 35)),
    CityscapesClass('terrain', 22, 9, 'nature', 4, False, False, (152, 251, 152)),
    CityscapesClass('sky', 23, 10, 'sky', 5, False, False, (70, 130, 180)),
    CityscapesClass('person', 24, 11, 'human', 6, True, False, (220, 20, 60)),
    CityscapesClass('rider', 25, 12, 'human', 6, True, False, (255, 0, 0)),
    CityscapesClass('car', 26, 13, 'vehicle', 7, True, False, (0, 0, 142)),
    CityscapesClass('truck', 27, 14, 'vehicle', 7, True, False, (0, 0, 70)),
    CityscapesClass('bus', 28, 15, 'vehicle', 7, True, False, (0, 60, 100)),
    CityscapesClass('caravan', 29, 255, 'vehicle', 7, True, True, (0, 0, 90)),
    CityscapesClass('trailer', 30, 255, 'vehicle', 7, True, True, (0, 0, 110)),
    CityscapesClass('train', 31, 16, 'vehicle', 7, True, False, (0, 80, 100)),
    CityscapesClass('motorcycle', 32, 17, 'vehicle', 7, True, False, (0, 0, 230)),
    CityscapesClass('bicycle', 33, 18, 'vehicle', 7, True, False, (119, 11, 32)),
    CityscapesClass('license plate', -1, -1, 'vehicle', 7, False, True, (0, 0, 142)),
]

cityscapes_id_to_trainID = {cls.id: cls.train_id for cls in classes}
cityscapes_trainID_to_testID = {cls.train_id: cls.id for cls in classes}
cityscapes_trainID_to_color = {cls.train_id: cls.color for cls in classes}
cityscapes_trainID_to_name = {cls.train_id: cls.name for cls in classes}
cityscapes_trainID_to_color[255] = (0, 0, 0)
cityscapes_trainID_to_name = {cls.train_id: cls.name for cls in classes}
cityscapes_trainID_to_name[255] = 'ignore'
cityscapes_trainID_to_name[19] = 'ignore'


def map2cs(seg):
    while len(seg.shape) > 2:
        seg = seg[0]
    colors = cityscapes_trainID_to_color
    # assert False, 'set ignore_idx color to black, make sure that it is not in colors'
    rgb = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
    for l in np.unique(seg):
        rgb[seg == l, :] = colors[l]
    return rgb


def get_colors(num_colors):
    from PIL import ImageColor
    import matplotlib
    hex_colors = [
        # "#000000", # keep the black reserved
        "#FFFF00", "#1CE6FF", "#FF34FF", "#FF4A46", "#008941", "#006FA6", "#A30059",
        "#FFDBE5", "#7A4900", "#0000A6", "#63FFAC", "#B79762", "#004D43", "#8FB0FF", "#997D87",
        "#5A0007", "#809693", "#FEFFE6", "#1B4400", "#4FC601", "#3B5DFF", "#4A3B53", "#FF2F80",
        "#61615A", "#BA0900", "#6B7900", "#00C2A0", "#FFAA92", "#FF90C9", "#B903AA", "#D16100",
        "#DDEFFF", "#000035", "#7B4F4B", "#A1C299", "#300018", "#0AA6D8", "#013349", "#00846F",
        "#372101", "#FFB500", "#C2FFED", "#A079BF", "#CC0744", "#C0B9B2", "#C2FF99", "#001E09",
        "#00489C", "#6F0062", "#0CBD66", "#EEC3FF", "#456D75", "#B77B68", "#7A87A1", "#788D66",
        "#885578", "#FAD09F", "#FF8A9A", "#D157A0", "#BEC459", "#456648", "#0086ED", "#886F4C",
        "#34362D", "#B4A8BD", "#00A6AA", "#452C2C", "#636375", "#A3C8C9", "#FF913F", "#938A81",
        "#575329", "#00FECF", "#B05B6F", "#8CD0FF", "#3B9700", "#04F757", "#C8A1A1", "#1E6E00",
        "#7900D7", "#A77500", "#6367A9", "#A05837", "#6B002C", "#772600", "#D790FF", "#9B9700",
        "#549E79", "#FFF69F", "#201625", "#72418F", "#BC23FF", "#99ADC0", "#3A2465", "#922329",
        "#5B4534", "#FDE8DC", "#404E55", "#0089A3", "#CB7E98", "#A4E804", "#324E72", "#6A3A4C",
        "#83AB58", "#001C1E", "#D1F7CE", "#004B28", "#C8D0F6", "#A3A489", "#806C66", "#222800",
        "#BF5650", "#E83000", "#66796D", "#DA007C", "#FF1A59", "#8ADBB4", "#1E0200", "#5B4E51",
        "#C895C5", "#320033", "#FF6832", "#66E1D3", "#CFCDAC", "#D0AC94", "#7ED379", "#012C58",
    ]
    hex_colors_mlib = list(matplotlib.colors.cnames.values())
    for hcm in hex_colors_mlib:
        if hcm not in hex_colors:
            hex_colors.append(hcm)
    colors = [ImageColor.getrgb(hex) for hex in hex_colors]
    return colors[:num_colors]


def colorize_one(seg, ignore=255, colors=None, ncolors=32):
    unq = np.unique(seg)
    if ncolors is not None:
        ncolors = max(ncolors, max(unq))
    else:
        ncolors = max(unq)
    colors = get_colors(ncolors) if colors is None else colors
    h, w = seg.shape
    c = 3
    rgb = np.zeros((h, w, c), dtype=np.uint8)
    for l in unq:
        if ignore is not None and l == ignore:
            continue
        try:
            rgb[seg == l, :] = colors[l]
        except:
            raise Exception(l)
    return rgb


def init_weights(m):
    if isinstance(m, nn.Linear):
        trunc_normal_(m.weight, std=0.02)
        if isinstance(m, nn.Linear) and m.bias is not None:
            nn.init.constant_(m.bias, 0)
    elif isinstance(m, nn.LayerNorm):
        nn.init.constant_(m.bias, 0)
        nn.init.constant_(m.weight, 1.0)


def resize_pos_embed(posemb, grid_old_shape, grid_new_shape, num_extra_tokens):
    # Rescale the grid of position embeddings when loading from state_dict. Adapted from
    # https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
    posemb_tok, posemb_grid = (
        posemb[:, :num_extra_tokens],
        posemb[0, num_extra_tokens:],
    )
    if grid_old_shape is None:
        gs_old_h = int(math.sqrt(len(posemb_grid)))
        gs_old_w = gs_old_h
    else:
        gs_old_h, gs_old_w = grid_old_shape

    gs_h, gs_w = grid_new_shape
    posemb_grid = posemb_grid.reshape(1, gs_old_h, gs_old_w, -1).permute(0, 3, 1, 2)
    posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
    posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
    return posemb


def checkpoint_filter_fn(state_dict, model):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    if "model" in state_dict:
        # For deit models
        state_dict = state_dict["model"]
    num_extra_tokens = 1 + ("dist_token" in state_dict.keys())
    patch_size = model.patch_size
    image_size = model.patch_embed.image_size
    for k, v in state_dict.items():
        if k == "pos_embed" and v.shape != model.pos_embed.shape:
            # To resize pos embedding when using model at different size from pretrained weights
            v = resize_pos_embed(
                v,
                None,
                (image_size[0] // patch_size, image_size[1] // patch_size),
                num_extra_tokens,
            )
        out_dict[k] = v
    return out_dict


def padding(im, patch_size, fill_value=0):
    # make the image sizes divisible by patch_size
    H, W = im.size(2), im.size(3)
    pad_h, pad_w = 0, 0
    if H % patch_size > 0:
        pad_h = patch_size - (H % patch_size)
    if W % patch_size > 0:
        pad_w = patch_size - (W % patch_size)
    im_padded = im
    if pad_h > 0 or pad_w > 0:
        im_padded = F.pad(im, (0, pad_w, 0, pad_h), value=fill_value)
    return im_padded


def unpadding(y, target_size):
    H, W = target_size
    H_pad, W_pad = y.size(2), y.size(3)
    # crop predictions on extra pixels coming from padding
    extra_h = H_pad - H
    extra_w = W_pad - W
    if extra_h > 0:
        y = y[:, :, :-extra_h]
    if extra_w > 0:
        y = y[:, :, :, :-extra_w]
    return y


def resize(im, smaller_size):
    h, w = im.shape[2:]
    if h < w:
        ratio = w / h
        h_res, w_res = smaller_size, ratio * smaller_size
    else:
        ratio = h / w
        h_res, w_res = ratio * smaller_size, smaller_size
    if min(h, w) < smaller_size:
        im_res = F.interpolate(im, (int(h_res), int(w_res)), mode="bilinear")
    else:
        im_res = im
    return im_res


def sliding_window(im, flip, window_size, window_stride, channels_first=True):
    if channels_first:
        B, C, H, W = im.shape
    else:
        B, H, W, C = im.shape
    ws = window_size

    windows = {"crop": [], "anchors": []}
    h_anchors = torch.arange(0, H, window_stride)
    w_anchors = torch.arange(0, W, window_stride)
    h_anchors = [h.item() for h in h_anchors if h < H - ws] + [H - ws]
    w_anchors = [w.item() for w in w_anchors if w < W - ws] + [W - ws]
    for ha in h_anchors:
        for wa in w_anchors:
            if channels_first:
                window = im[:, :, ha: ha + ws, wa: wa + ws]
            else:
                window = im[:, ha: ha + ws, wa: wa + ws]
            windows["crop"].append(window)
            windows["anchors"].append((ha, wa))
    windows["flip"] = flip
    windows["shape"] = (H, W)
    return windows


def merge_windows(windows, window_size, ori_shape, no_softmax=False, no_upsample=False, patch_size=None):
    ws = window_size
    im_windows = windows["seg_maps"]
    anchors = windows["anchors"]
    C = im_windows[0].shape[0]
    H, W = windows["shape"]
    flip = windows["flip"]

    if no_upsample:
        H, W = H // patch_size, W // patch_size

    logit = torch.zeros((C, H, W), device=im_windows.device)
    count = torch.zeros((1, H, W), device=im_windows.device)
    for window, (ha, wa) in zip(im_windows, anchors):
        if no_upsample:
            ha = ha // patch_size
            wa = wa // patch_size
        logit[:, ha: ha + ws, wa: wa + ws] += window
        count[:, ha: ha + ws, wa: wa + ws] += 1
    logit /= count
    # print('Interpolate {} -> {}'.format(logit.shape, ori_shape))
    if not no_upsample:
        logit = F.interpolate(
            logit.unsqueeze(0),
            ori_shape,
            mode="bilinear",
        )[0]
    if flip:
        logit = torch.flip(logit, (2,))
    if not no_softmax:
        # print('Softmax in merge_windows')
        result = F.softmax(logit, 0)
    else:
        # print('No softmax in merge_windows')
        result = logit
    return result


def debug_windows(windows, debug_file):
    pass


def inference_picie(
        model,
        classifier,
        metric_test,
        ims,
        ori_shape,
        window_size,
        window_stride,
        batch_size,
        decoder_features=False,
        no_upsample=False,
        debug_file=None,
        im_rgb=None,
        channel_first=False
):
    try:
        C = model.n_cls
    except:
        C = classifier.module.bias.shape[0]

    # seg_maps = []

    # for im, im_metas in zip(ims, ims_metas):
    for im in ims:
        im = im.to('cuda')
        if len(im.shape) == 3:
            im = im.unsqueeze(0)
        flip = False  # im_metas["flip"]
        windows = sliding_window(im, flip, window_size, window_stride)
        crops = torch.stack(windows.pop("crop"))[:, 0]
        num_crops = len(crops)

        WB = batch_size if batch_size > 0 else num_crops
        if no_upsample:
            window_size = window_size // model.patch_size
        seg_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device)
        with torch.no_grad():
            for i in range(0, num_crops, WB):
                # try:
                feats = model.forward(crops[i: i + WB])
                if metric_test == 'cosine':
                    feats = F.normalize(feats, dim=1, p=2)
                probs = classifier(feats)
                probs = F.interpolate(probs, crops[i: i + WB].shape[-2:], mode='bilinear', align_corners=False)
                seg_maps[i: i + WB] = probs
        windows["seg_maps"] = seg_maps

        im_seg_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features,
                                   no_upsample=no_upsample, patch_size=None)

        seg_map = im_seg_map
        if no_upsample and not decoder_features:
            pass
        else:
            seg_map = F.interpolate(
                seg_map.unsqueeze(0),
                ori_shape,
                mode="bilinear",
            )

    return seg_map


def inference(
        model,
        ims,
        ori_shape,
        window_size,
        window_stride,
        batch_size,
        decoder_features=False,
        encoder_features=False,
        no_upsample=False,
):
    C = model.n_cls
    patch_size = model.patch_size

    # seg_maps = []

    # for im, im_metas in zip(ims, ims_metas):
    for im in ims:
        # im = im.to('cuda')
        if len(im.shape) == 3:
            im = im.unsqueeze(0)
        # im = resize(im, window_size)
        flip = False  # im_metas["flip"]
        # print(im)
        windows = sliding_window(im, flip, window_size, window_stride)
        # print(windows)
        crops = torch.stack(windows.pop("crop"))[:, 0]
        num_crops = len(crops)

        WB = batch_size if batch_size > 0 else num_crops
        if no_upsample:
            window_size = window_size // model.patch_size
            # print('Change variable window_size to {}'.format(window_size))
        seg_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device)
        # print('Allocated segm_maps:  {}, device: {}'.format(seg_maps.shape, seg_maps.device))
        with torch.no_grad():
            for i in range(0, num_crops, WB):
                # try:
                # print('Forward crop {}'.format(crops[i: i + WB].shape))
                seg_maps[i: i + WB] = model.forward(crops[i: i + WB], decoder_features=decoder_features,
                                                    encoder_features=encoder_features,
                                                    no_upsample=no_upsample)
        windows["seg_maps"] = seg_maps

        im_seg_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features,
                                   no_upsample=no_upsample, patch_size=model.patch_size)

        seg_map = im_seg_map
        if no_upsample and not decoder_features:
            pass
        else:
            seg_map = F.interpolate(
                seg_map.unsqueeze(0),
                ori_shape,
                mode="bilinear",
            )
        # seg_maps.append(seg_map)

        # print('Done one inference.')
    # seg_maps = torch.cat(seg_maps, dim=0)
    return seg_map


def inference_features(
        model,
        ims,
        ori_shape,
        window_size,
        window_stride,
        batch_size,
        decoder_features=False,
        encoder_features=False,
        save2cpu=False,
        no_upsample=True,
        encoder_only=False
):
    C = model.n_cls if decoder_features else model.encoder.d_model
    patch_size = model.patch_size

    # seg_maps = []

    # for im, im_metas in zip(ims, ims_metas):
    for im in ims:
        im = im.to('cuda')
        if len(im.shape) == 3:
            im = im.unsqueeze(0)
        # im = resize(im, window_size)
        flip = False  # im_metas["flip"]
        # print(im)
        windows = sliding_window(im, flip, window_size, window_stride)
        # print(windows)
        crops = torch.stack(windows.pop("crop"))[:, 0]
        num_crops = len(crops)

        WB = batch_size if batch_size > 0 else num_crops
        if no_upsample:
            window_size = window_size // model.patch_size
            # print('Change variable window_size to {}'.format(window_size))
        enc_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device)
        if decoder_features:
            dec_maps = torch.zeros((num_crops, C, window_size, window_size), device=im.device)
        # print('Allocated segm_maps:  {}, device: {}'.format(seg_maps.shape, seg_maps.device))
        with torch.no_grad():
            for i in range(0, num_crops, WB):
                enc_fts = model.forward(crops[i: i + WB], decoder_features=decoder_features,
                                        encoder_features=True,
                                        no_upsample=no_upsample, encoder_only=encoder_only)
                if decoder_features:
                    enc_fts, dec_fts = enc_fts
                    dec_maps[i: i + WB] = dec_fts
                elif isinstance(enc_fts, tuple):
                    enc_fts = enc_fts[0]
                enc_maps[i: i + WB] = enc_fts

        windows["seg_maps"] = enc_maps
        im_enc_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features,
                                   no_upsample=no_upsample, patch_size=model.patch_size)

        if decoder_features:
            windows["seg_maps"] = dec_maps
            im_dec_map = merge_windows(windows, window_size, ori_shape, no_softmax=decoder_features,
                                       no_upsample=no_upsample, patch_size=model.patch_size)

        if no_upsample:
            pass
        else:
            im_enc_map = F.interpolate(
                im_enc_map.unsqueeze(0),
                ori_shape,
                mode="bilinear",
            )
            if decoder_features:
                im_dec_map = F.interpolate(
                    im_dec_map.unsqueeze(0),
                    ori_shape,
                    mode="bilinear",
                )

    im_enc_map = im_enc_map.cpu().numpy()
    if decoder_features:
        im_dec_map = im_dec_map.cpu().numpy()
        return im_enc_map, im_dec_map

    return im_enc_map


def inference_conv(
        model,
        ims,
        ims_metas,
        ori_shape
):
    assert len(ims) == 1
    for im, im_metas in zip(ims, ims_metas):
        im = im.to(ptu.device)
        if len(im.shape) < 4:
            im = im.unsqueeze(0)
        logits = model(im)
        if ori_shape[:2] != logits.shape[-2:]:
            # resize
            logits = F.interpolate(
                logits,
                ori_shape[-2:],
                mode="bilinear",
            )
        # 3) applies softmax
        result = F.softmax(logits.squeeze(), 0)
    # print(result.shape)
    return result


def num_params(model):
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    n_params = sum([torch.prod(torch.tensor(p.size())) for p in model_parameters])
    if not type(n_params) == int:
        n_params = n_params.item()
    return n_params