File size: 1,841 Bytes
dd78229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#
# Authors: Wouter Van Gansbeke & Simon Vandenhende
# Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)

import torch.nn as nn

class ResnetDilated(nn.Module):
    def __init__(self, orig_resnet, dilate_scale=8):
        super(ResnetDilated, self).__init__()
        from functools import partial

        if dilate_scale == 8:
            orig_resnet.layer3.apply(
                partial(self._nostride_dilate, dilate=2))
            orig_resnet.layer4.apply(
                partial(self._nostride_dilate, dilate=4))
        elif dilate_scale == 16:
            orig_resnet.layer4.apply(
                partial(self._nostride_dilate, dilate=2))

        self.conv1 = orig_resnet.conv1
        self.bn1 = orig_resnet.bn1
        self.relu = orig_resnet.relu
        
        self.maxpool = orig_resnet.maxpool
        self.layer1 = orig_resnet.layer1
        self.layer2 = orig_resnet.layer2
        self.layer3 = orig_resnet.layer3
        self.layer4 = orig_resnet.layer4

    def _nostride_dilate(self, m, dilate):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            # the convolution with stride
            if m.stride == (2, 2):
                m.stride = (1, 1)
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate//2, dilate//2)
                    m.padding = (dilate//2, dilate//2)
            # other convoluions
            else:
                if m.kernel_size == (3, 3):
                    m.dilation = (dilate, dilate)
                    m.padding = (dilate, dilate)

    def forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.maxpool(x)

        x = self.layer1(x) 
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        
        return x