File size: 7,328 Bytes
1cd3497 2768572 79883d7 2768572 537ba12 2768572 79883d7 c42d6a9 1cd3497 f64097e 1cd3497 f64097e 1cd3497 ab7ed04 f64097e 30dd27d ab7ed04 30dd27d 1cd3497 79883d7 2768572 1cd3497 ce7e2cb 595b65e ce7e2cb a460b8c ce7e2cb f905233 5db2efd bf60055 a460b8c 5db2efd f64097e f905233 1cd3497 06a5b99 f64097e acab14f f64097e 15b34e1 8f58bc8 5db9b85 15b34e1 9b98523 1cd3497 8ea3b63 8f58bc8 ce7e2cb a460b8c bf60055 8f58bc8 1cd3497 f64097e 1cd3497 f64097e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import subprocess
from moviepy.editor import VideoFileClip
def convert_to_mp4_with_aac(input_path, output_path):
# Load the video
video = VideoFileClip(input_path)
# Set the output format to mp4 with AAC codec
video.write_videofile(output_path, codec="libx264", audio_codec="aac")
return output_path
def load_audio(audio_listed):
return f"data/audio/{audio_listed}"
def execute_command(command: str) -> None:
subprocess.run(command, check=True)
def infer(audio_input, image_path, emotional_style):
output_name = "lipsynced_result"
command = [
f"python",
f"inference_for_demo_video.py",
f"--wav_path={audio_input}",
f"--style_clip_path=data/style_clip/3DMM/{emotional_style}",
f"--pose_path=data/pose/RichardShelby_front_neutral_level1_001.mat",
f"--image_path={image_path}",
f"--cfg_scale=1.0",
f"--max_gen_len=30",
f"--output_name={output_name}"
]
execute_command(command)
# Convert video to compatible codecs
input_file = f"output_video/{output_name}.mp4"
output_file = f"{output_name}.mp4"
result = convert_to_mp4_with_aac(input_file, output_file)
return result
css="""
#col-container{
margin: 0 auto;
max-width: 940px;
}
#project-links{
margin-top: 12px!important;
column-gap: 8px;
display: flex;
justify-content: center;
flex-wrap: nowrap;
flex-direction: row;
align-items: center;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<h1 style="text-align: center;">DreamTalk</h1>
<h2 style="text-align: center;">When Expressive Talking Head Generation Meets Diffusion Probabilistic Models</h2>
<p style="text-align: center;max-width:720px;">
DreamTalk is a diffusion-based audio-driven expressive talking head generation framework that can produce high-quality talking head videos across diverse speaking styles.
DreamTalk exhibits robust performance with a diverse array of inputs, including songs, speech in multiple languages, noisy audio, and out-of-domain portraits.
</p>
""")
with gr.Row():
with gr.Column():
image_path = gr.Image(label="Image", type="filepath", sources=["upload"])
audio_input = gr.Audio(label="Audio input", type="filepath", sources=["upload"], value="data/audio/acknowledgement_english.m4a")
with gr.Row():
audio_list = gr.Dropdown(
label="Choose an audio (optional)",
choices=[
"German1.wav", "German2.wav", "German3.wav", "German4.wav",
"acknowledgement_chinese.m4a", "acknowledgement_english.m4a",
"chinese1_haierlizhi.wav", "chinese2_guanyu.wav",
"french1.wav", "french2.wav", "french3.wav",
"italian1.wav", "italian2.wav", "italian3.wav",
"japan1.wav", "japan2.wav", "japan3.wav",
"korean1.wav", "korean2.wav", "korean3.wav",
"noisy_audio_cafeter_snr_0.wav", "noisy_audio_meeting_snr_0.wav", "noisy_audio_meeting_snr_10.wav", "noisy_audio_meeting_snr_20.wav", "noisy_audio_narrative.wav", "noisy_audio_office_snr_0.wav", "out_of_domain_narrative.wav",
"spanish1.wav", "spanish2.wav", "spanish3.wav"
],
value = "acknowledgement_english.m4a"
)
audio_list.change(
fn = load_audio,
inputs = [audio_list],
outputs = [audio_input]
)
emotional_style = gr.Dropdown(
label = "emotional style",
choices = [
"M030_front_angry_level3_001.mat",
"M030_front_contempt_level3_001.mat",
"M030_front_disgusted_level3_001.mat",
"M030_front_fear_level3_001.mat",
"M030_front_happy_level3_001.mat",
"M030_front_neutral_level1_001.mat",
"M030_front_sad_level3_001.mat",
"M030_front_surprised_level3_001.mat",
"W009_front_angry_level3_001.mat",
"W009_front_contempt_level3_001.mat",
"W009_front_disgusted_level3_001.mat",
"W009_front_fear_level3_001.mat",
"W009_front_happy_level3_001.mat",
"W009_front_neutral_level1_001.mat",
"W009_front_sad_level3_001.mat",
"W009_front_surprised_level3_001.mat",
"W011_front_angry_level3_001.mat",
"W011_front_contempt_level3_001.mat",
"W011_front_disgusted_level3_001.mat",
"W011_front_fear_level3_001.mat",
"W011_front_happy_level3_001.mat",
"W011_front_neutral_level1_001.mat",
"W011_front_sad_level3_001.mat",
"W011_front_surprised_level3_001.mat"
],
value = "M030_front_neutral_level1_001.mat"
)
gr.Examples(
examples = [
"data/src_img/uncropped/face3.png",
"data/src_img/uncropped/male_face.png",
"data/src_img/uncropped/uncut_src_img.jpg",
"data/src_img/cropped/chpa5.png",
"data/src_img/cropped/cut_img.png",
"data/src_img/cropped/f30.png",
"data/src_img/cropped/menglu2.png",
"data/src_img/cropped/nscu2.png",
"data/src_img/cropped/zp1.png",
"data/src_img/cropped/zt12.png"
],
inputs=[image_path],
examples_per_page=5
)
run_btn = gr.Button("Run")
with gr.Column():
output_video = gr.Video(format="mp4")
gr.HTML("""
<img src="https://github.com/ali-vilab/dreamtalk/raw/main/media/teaser.gif" style="margin: 0 auto;border-radius: 10px;" />
<p id="project-links" align="center">
<a href='https://dreamtalk-project.github.io/'><img src='https://img.shields.io/badge/Project-Page-Green'></a> <a href='https://arxiv.org/abs/2312.09767'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a> <a href='https://youtu.be/VF4vlE6ZqWQ'><img src='https://badges.aleen42.com/src/youtube.svg'></a>
</p>
""")
run_btn.click(
fn = infer,
inputs = [audio_input, image_path, emotional_style],
outputs = [output_video]
)
demo.queue().launch() |