File size: 9,134 Bytes
9e1fe39 51a3039 e2f3dc3 51a3039 3f7bb48 51a3039 e2f3dc3 51a3039 9de793a e2f3dc3 3b1cd91 e2f3dc3 39fbfd3 e2f3dc3 39fbfd3 e2f3dc3 cf075ed e2f3dc3 cf075ed e2f3dc3 cf075ed b9fb0d0 cf075ed e2f3dc3 cf075ed e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 eb43650 cf075ed eb43650 51a3039 e2f3dc3 51a3039 b8cc811 f5f3ec4 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 51a3039 e2f3dc3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import spaces
import os
import gc
from functools import partial
import gradio as gr
import torch
from speechbrain.inference.interfaces import Pretrained, foreign_class
from transformers import T5Tokenizer, T5ForConditionalGeneration
import librosa
import whisper_timestamped as whisper
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.backends.cuda.matmul.allow_tf32 = True
def clean_up_memory():
gc.collect()
torch.cuda.empty_cache()
@spaces.GPU(duration=15)
def recap_sentence(string):
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0)
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
return recap_result
@spaces.GPU(duration=30)
def return_prediction_w2v2(mic=None, file=None, device=device):
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:60*sr]
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
elif file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:60*sr]
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
else:
return "You must either provide a mic recording or a file"
recap_result = recap_sentence(w2v2_result[0])
for i, letter in enumerate(recap_result):
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
clean_up_memory()
return recap_result
@spaces.GPU(duration=30)
def return_prediction_whisper_mic(mic=None, device=device):
if mic is not None:
waveform, sr = librosa.load(mic, sr=16000)
waveform = waveform[:30*sr]
whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
else:
return "You must provide a mic recording"
recap_result = recap_sentence(whisper_result[0])
for i, letter in enumerate(recap_result):
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
clean_up_memory()
return recap_result
@spaces.GPU(duration=60)
def return_prediction_whisper_file(file=None, device=device):
whisper_result = []
if file is not None:
waveform, sr = librosa.load(file, sr=16000)
waveform = waveform[:3600*sr]
whisper_result = whisper_classifier.classify_file_whisper_mkd_streaming(waveform, device)
else:
yield "You must provide a file"
recap_result = ""
prev_segment = ""
prev_segment_len = 0
segment_counter = 0
for segment in whisper_result:
segment_counter += 1
if prev_segment == "":
recap_segment = recap_sentence(segment[0])
else:
prev_segment_len = len(prev_segment.split())
recap_segment = recap_sentence(prev_segment + " " + segment[0])
recap_segment = recap_segment.split()
recap_segment = recap_segment[prev_segment_len:]
recap_segment = " ".join(recap_segment)
prev_segment = segment[0]
recap_result += recap_segment + " "
for i, letter in enumerate(recap_result):
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
yield recap_result
return_prediction_whisper_mic_with_device = partial(return_prediction_whisper_mic, device=device)
return_prediction_whisper_file_with_device = partial(return_prediction_whisper_file, device=device)
return_prediction_w2v2_with_device = partial(return_prediction_w2v2, device=device)
# Load the ASR models
whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
whisper_classifier = whisper_classifier.to(device)
whisper_classifier.eval()
w2v2_classifier = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
w2v2_classifier = w2v2_classifier.to(device)
w2v2_classifier.eval()
# Load the T5 tokenizer and model
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian"
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name)
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16)
recap_model.to(device)
recap_model.eval()
# Interface definitions
mic_transcribe_whisper = gr.Interface(
fn=return_prediction_whisper_mic_with_device,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=False,
)
file_transcribe_whisper = gr.Interface(
fn=return_prediction_whisper_file_with_device,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=True
)
mic_transcribe_w2v2 = gr.Interface(
fn=return_prediction_w2v2_with_device,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=False,
)
file_transcribe_w2v2 = gr.Interface(
fn=return_prediction_w2v2_with_device,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.Textbox(),
allow_flagging="never",
live=False
)
project_description = '''
<img src="https://i.ibb.co/SKDfwn9/bookie.png"
alt="Bookie logo"
style="float: right; width: 130px; height: 110px; margin-left: 10px;" />
## Автори:
1. **Дејан Порјазовски**
2. **Илина Јакимовска**
3. **Ордан Чукалиев**
4. **Никола Стиков**
Оваа колаборација е дел од активностите на **Центарот за напредни интердисциплинарни истражувања ([ЦеНИИс](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** при УКИМ.
## Во тренирањето на овој модел се употребени податоци од:
1. Дигитален архив за етнолошки и антрополошки ресурси ([ДАЕАР](https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a)) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
2. Аудио верзија на меѓународното списание [„ЕтноАнтропоЗум"](https://etno.pmf.ukim.mk/index.php/eaz/issue/archive) на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
3. Аудио подкастот [„Обични луѓе"](https://obicniluge.mk/episodes/) на Илина Јакимовска
4. Научните видеа од серијалот [„Наука за деца"](http://naukazadeca.mk), фондација [КАНТАРОТ](https://qantarot.substack.com/)
5. Македонска верзија на [Mozilla Common Voice](https://commonvoice.mozilla.org/en/datasets) (верзија 18.0)
## Како да придонесете за подобрување на македонските модели за препознавање на говор?
На следниот [линк](https://drive.google.com/file/d/1YdZJz9o1X8AMc6J4MNPnVZjASyIXnvoZ/view?usp=sharing) ќе најдете инструкции за тоа како да донирате македонски говор преку платформата Mozilla Common Voice.
'''
# Custom CSS
css = """
.gradio-container {
background-color: #f0f0f0;
}
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a {
font-size: 15px !important;
font-family: Arial, sans-serif !important;
}
.gradio-container {
background-color: #f3f3f3 !important;
}
"""
transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120))
with transcriber_app:
state = gr.State()
gr.Markdown(project_description, elem_classes="custom-markdown")
gr.TabbedInterface(
[mic_transcribe_whisper, file_transcribe_whisper, mic_transcribe_w2v2, file_transcribe_w2v2],
["Буки-Whisper микрофон", "Буки-Whisper датотека", "Буки-Wav2vec2 микрофон", "Буки-Wav2vec2 датотека"],
)
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
transcriber_app.unload(return_prediction_whisper_mic)
transcriber_app.unload(return_prediction_whisper_file)
transcriber_app.unload(return_prediction_w2v2)
if __name__ == "__main__":
transcriber_app.queue()
transcriber_app.launch(share=True) |