File size: 32,258 Bytes
6fc43ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
__all__ = ['Transformer']
import wandb
import torch
import numpy as np
import functools
import inspect
import monai
import random
from tqdm import tqdm
from functools import wraps
from sklearn.base import BaseEstimator
from sklearn.utils.validation import check_is_fitted
from sklearn.model_selection import train_test_split
from scipy.special import expit
from copy import deepcopy
from contextlib import suppress
from typing import Any, Self, Type
Tensor = Type[torch.Tensor]
Module = Type[torch.nn.Module]
from torch.utils.data import DataLoader
from monai.utils.type_conversion import convert_to_tensor
from monai.transforms import (
LoadImaged,
Compose,
CropForegroundd,
CopyItemsd,
SpatialPadd,
EnsureChannelFirstd,
Spacingd,
OneOf,
ScaleIntensityRanged,
HistogramNormalized,
RandSpatialCropSamplesd,
RandSpatialCropd,
CenterSpatialCropd,
RandCoarseDropoutd,
RandCoarseShuffled,
Resized,
)
# for DistributedDataParallel
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
from .. import nn
from ..utils.misc import ProgressBar
from ..utils.misc import get_metrics_multitask, print_metrics_multitask
from ..utils.misc import convert_args_kwargs_to_kwargs
import warnings
warnings.filterwarnings("ignore")
def _manage_ctx_fit(func):
''' ... '''
@wraps(func)
def wrapper(*args, **kwargs):
# format arguments
kwargs = convert_args_kwargs_to_kwargs(func, args, kwargs)
if kwargs['self']._device_ids is None:
return func(**kwargs)
else:
# change primary device
default_device = kwargs['self'].device
kwargs['self'].device = kwargs['self']._device_ids[0]
rtn = func(**kwargs)
kwargs['self'].to(default_device)
return rtn
return wrapper
def collate_handle_corrupted(samples_list, dataset, labels, dtype=torch.half):
# print(len(samples_list))
orig_len = len(samples_list)
# for the loss to be consistent, we drop samples with NaN values in any of their corresponding crops
for i, s in enumerate(samples_list):
ic(s is None)
if s is None:
continue
samples_list = list(filter(lambda x: x is not None, samples_list))
if len(samples_list) == 0:
ic('recursive call')
return collate_handle_corrupted([dataset[random.randint(0, len(dataset)-1)] for _ in range(orig_len)], dataset, labels)
# collated_images = torch.stack([convert_to_tensor(s["image"]) for s in samples_list])
try:
if "image" in samples_list[0]:
samples_list = [s for s in samples_list if not torch.isnan(s["image"]).any()]
# print('samples list: ', len(samples_list))
collated_images = torch.stack([convert_to_tensor(s["image"]) for s in samples_list])
# print("here1")
collated_labels = {k: torch.Tensor([s["label"][k] if s["label"][k] is not None else 0 for s in samples_list]) for k in labels}
# print("here2")
collated_mask = {k: torch.Tensor([1 if s["label"][k] is not None else 0 for s in samples_list]) for k in labels}
# print("here3")
return {"image": collated_images,
"label": collated_labels,
"mask": collated_mask}
except:
return collate_handle_corrupted([dataset[random.randint(0, len(dataset)-1)] for _ in range(orig_len)], dataset, labels)
def get_backend(img_backend):
if img_backend == 'C3D':
return nn.C3D
elif img_backend == 'DenseNet':
return nn.DenseNet
class ImagingModel(BaseEstimator):
''' ... '''
def __init__(self,
tgt_modalities: list[str],
label_fractions: dict[str, float],
num_epochs: int = 32,
batch_size: int = 8,
batch_size_multiplier: int = 1,
lr: float = 1e-2,
weight_decay: float = 0.0,
beta: float = 0.9999,
gamma: float = 2.0,
bn_size: int = 4,
growth_rate: int = 12,
block_config: tuple = (3, 3, 3),
compression: float = 0.5,
num_init_features: int = 16,
drop_rate: float = 0.2,
criterion: str | None = None,
device: str = 'cpu',
cuda_devices: list = [1],
ckpt_path: str = '/home/skowshik/ADRD_repo/adrd_tool/dev/ckpt/ckpt.pt',
load_from_ckpt: bool = True,
save_intermediate_ckpts: bool = False,
data_parallel: bool = False,
verbose: int = 0,
img_backend: str | None = None,
label_distribution: dict = {},
wandb_ = 1,
_device_ids: list | None = None,
_dataloader_num_workers: int = 4,
_amp_enabled: bool = False,
) -> None:
''' ... '''
# for multiprocessing
self._rank = 0
self._lock = None
# positional parameters
self.tgt_modalities = tgt_modalities
# training parameters
self.label_fractions = label_fractions
self.num_epochs = num_epochs
self.batch_size = batch_size
self.batch_size_multiplier = batch_size_multiplier
self.lr = lr
self.weight_decay = weight_decay
self.beta = beta
self.gamma = gamma
self.bn_size = bn_size
self.growth_rate = growth_rate
self.block_config = block_config
self.compression = compression
self.num_init_features = num_init_features
self.drop_rate = drop_rate
self.criterion = criterion
self.device = device
self.cuda_devices = cuda_devices
self.ckpt_path = ckpt_path
self.load_from_ckpt = load_from_ckpt
self.save_intermediate_ckpts = save_intermediate_ckpts
self.data_parallel = data_parallel
self.verbose = verbose
self.img_backend = img_backend
self.label_distribution = label_distribution
self.wandb_ = wandb_
self._device_ids = _device_ids
self._dataloader_num_workers = _dataloader_num_workers
self._amp_enabled = _amp_enabled
self.scaler = torch.cuda.amp.GradScaler()
@_manage_ctx_fit
def fit(self, trn_list, vld_list, img_train_trans=None, img_vld_trans=None) -> Self:
# def fit(self, x, y) -> Self:
''' ... '''
# start a new wandb run to track this script
if self.wandb_ == 1:
wandb.init(
# set the wandb project where this run will be logged
project="ADRD_main",
# track hyperparameters and run metadata
config={
"Model": "DenseNet",
"Loss": 'Focalloss',
"EMB": "ALL_EMB",
"epochs": 256,
}
)
wandb.run.log_code("/home/skowshik/ADRD_repo/pipeline_v1_main/adrd_tool")
else:
wandb.init(mode="disabled")
# for PyTorch computational efficiency
torch.set_num_threads(1)
print(self.criterion)
# initialize neural network
self._init_net()
# for k, info in self.src_modalities.items():
# if info['type'] == 'imaging' and self.img_net != 'EMB':
# info['shape'] = (1,) + (self.img_size,) * 3
# info['img_shape'] = (1,) + (self.img_size,) * 3
# print(info['shape'])
# initialize dataloaders
# ldr_trn, ldr_vld = self._init_dataloader(x, y)
# ldr_trn, ldr_vld = self._init_dataloader(x_trn, x_vld, y_trn, y_vld)
ldr_trn, ldr_vld = self._init_dataloader(trn_list, vld_list, img_train_trans=img_train_trans, img_vld_trans=img_vld_trans)
# initialize optimizer and scheduler
if not self.load_from_ckpt:
self.optimizer = self._init_optimizer()
self.scheduler = self._init_scheduler(self.optimizer)
# gradient scaler for AMP
if self._amp_enabled:
self.scaler = torch.cuda.amp.GradScaler()
# initialize focal loss function
self.loss_fn = {}
for k in self.tgt_modalities:
if self.label_fractions[k] >= 0.3:
alpha = -1
else:
alpha = pow((1 - self.label_fractions[k]), 2)
# alpha = -1
self.loss_fn[k] = nn.SigmoidFocalLoss(
alpha = alpha,
gamma = self.gamma,
reduction = 'none'
)
# to record the best validation performance criterion
if self.criterion is not None:
best_crit = None
best_crit_AUPR = None
# progress bar for epoch loops
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch = tqdm(
desc = 'Rank {:02d}'.format(self._rank),
total = self.num_epochs,
position = self._rank,
ascii = True,
leave = False,
bar_format='{l_bar}{r_bar}'
)
# Define a hook function to print and store the gradient of a layer
def print_and_store_grad(grad, grad_list):
grad_list.append(grad)
# print(grad)
# grad_list = []
# self.net_.modules_emb_src['img_MRI_T1'].downsample[0].weight.register_hook(lambda grad: print_and_store_grad(grad, grad_list))
# lambda_coeff = 0.0001
# margin_loss = torch.nn.MarginRankingLoss(reduction='sum', margin=0.05)
# training loop
for epoch in range(self.start_epoch, self.num_epochs):
met_trn = self.train_one_epoch(ldr_trn, epoch)
met_vld = self.validate_one_epoch(ldr_vld, epoch)
print(self.ckpt_path.split('/')[-1])
# save the model if it has the best validation performance criterion by far
if self.criterion is None: continue
# is current criterion better than previous best?
curr_crit = np.mean([met_vld[i][self.criterion] for i in range(len(self.tgt_modalities))])
curr_crit_AUPR = np.mean([met_vld[i]["AUC (PR)"] for i in range(len(self.tgt_modalities))])
# AUROC
if best_crit is None or np.isnan(best_crit):
is_better = True
elif self.criterion == 'Loss' and best_crit >= curr_crit:
is_better = True
elif self.criterion != 'Loss' and best_crit <= curr_crit :
is_better = True
else:
is_better = False
# AUPR
if best_crit_AUPR is None or np.isnan(best_crit_AUPR):
is_better_AUPR = True
elif best_crit_AUPR <= curr_crit_AUPR :
is_better_AUPR = True
else:
is_better_AUPR = False
# update best criterion
if is_better_AUPR:
best_crit_AUPR = curr_crit_AUPR
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path[:-3]}_AUPR.pt...")
self.save(self.ckpt_path[:-3]+"_AUPR.pt", epoch)
if is_better:
best_crit = curr_crit
best_state_dict = deepcopy(self.net_.state_dict())
if self.save_intermediate_ckpts:
print(f"Saving the model to {self.ckpt_path}...")
self.save(self.ckpt_path, epoch)
if self.verbose > 2:
print('Best {}: {}'.format(self.criterion, best_crit))
print('Best {}: {}'.format('AUC (PR)', best_crit_AUPR))
if self.verbose == 1:
with self._lock if self._lock is not None else suppress():
pbr_epoch.update(1)
pbr_epoch.refresh()
return self
def train_one_epoch(self, ldr_trn, epoch):
# progress bar for batch loops
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_trn.dataset), 'Epoch {:03d} (TRN)'.format(epoch))
torch.set_grad_enabled(True)
self.net_.train()
scores_trn, y_true_trn, y_mask_trn = [], [], []
losses_trn = [[] for _ in self.tgt_modalities]
iters = len(ldr_trn)
print(iters)
for n_iter, batch_data in enumerate(ldr_trn):
# if len(batch_data["image"]) < self.batch_size:
# continue
x_batch = batch_data["image"].to(self.device, non_blocking=True)
y_batch = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["label"].items()}
y_mask = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["mask"].items()}
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled,
):
outputs = self.net_(x_batch, shap=False)
# print(outputs.shape)
# calculate multitask loss
loss = 0
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
msk_loss_mean = msk_loss_task.sum() / y_mask[k].sum()
loss += msk_loss_mean
losses_trn[i] += msk_loss_task.detach().cpu().numpy().tolist()
# backward
if self._amp_enabled:
self.scaler.scale(loss).backward()
else:
loss.backward()
# print(len(grad_list), len(grad_list[-1]))
# print(f"Gradient at {n_iter}: {grad_list[-1][0]}")
# update parameters
if n_iter != 0 and n_iter % self.batch_size_multiplier == 0:
if self._amp_enabled:
self.scaler.step(self.optimizer)
self.scaler.update()
self.optimizer.zero_grad()
else:
self.optimizer.step()
self.optimizer.zero_grad()
# set self.scheduler
self.scheduler.step(epoch + n_iter / iters)
# print(f"Weight: {self.net_.module.features[0].weight[0]}")
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_trn.append(outputs.detach().to(torch.float).cpu())
y_true_trn.append(y_batch.cpu())
y_mask_trn.append(y_mask.cpu())
# log metrics to wandb
# update progress bar
if self.verbose > 1:
batch_size = len(x_batch)
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# # set self.scheduler
# self.scheduler.step()
# calculate and print training performance metrics
scores_trn = torch.cat(scores_trn)
y_true_trn = torch.cat(y_true_trn)
y_mask_trn = torch.cat(y_mask_trn)
y_pred_trn = (scores_trn > 0).to(torch.int)
y_prob_trn = torch.sigmoid(scores_trn)
met_trn = get_metrics_multitask(
y_true_trn.numpy(),
y_pred_trn.numpy(),
y_prob_trn.numpy(),
y_mask_trn.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_trn[i]['Loss'] = np.mean(losses_trn[i])
wandb.log({f"Train loss {list(self.tgt_modalities)[i]}": met_trn[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train Balanced Accuracy {list(self.tgt_modalities)[i]}": met_trn[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUC (ROC) {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Train AUPR {list(self.tgt_modalities)[i]}": met_trn[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_trn)
return met_trn
# @torch.no_grad()
def validate_one_epoch(self, ldr_vld, epoch):
# progress bar for validation
if self.verbose > 1:
pbr_batch = ProgressBar(len(ldr_vld.dataset), 'Epoch {:03d} (VLD)'.format(epoch))
# set model to validation mode
torch.set_grad_enabled(False)
self.net_.eval()
scores_vld, y_true_vld, y_mask_vld = [], [], []
losses_vld = [[] for _ in self.tgt_modalities]
for batch_data in ldr_vld:
# if len(batch_data["image"]) < self.batch_size:
# continue
x_batch = batch_data["image"].to(self.device, non_blocking=True)
y_batch = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["label"].items()}
y_mask = {k: v.to(self.device, non_blocking=True) for k,v in batch_data["mask"].items()}
# forward
with torch.autocast(
device_type = 'cpu' if self.device == 'cpu' else 'cuda',
dtype = torch.bfloat16 if self.device == 'cpu' else torch.float16,
enabled = self._amp_enabled
):
outputs = self.net_(x_batch, shap=False)
# calculate multitask loss
for i, k in enumerate(self.tgt_modalities):
loss_task = self.loss_fn[k](outputs[k], y_batch[k])
msk_loss_task = loss_task * y_mask[k]
losses_vld[i] += msk_loss_task.detach().cpu().numpy().tolist()
''' TODO: change array to dictionary later '''
outputs = torch.stack(list(outputs.values()), dim=1)
y_batch = torch.stack(list(y_batch.values()), dim=1)
y_mask = torch.stack(list(y_mask.values()), dim=1)
# save outputs to evaluate performance later
scores_vld.append(outputs.detach().to(torch.float).cpu())
y_true_vld.append(y_batch.cpu())
y_mask_vld.append(y_mask.cpu())
# update progress bar
if self.verbose > 1:
batch_size = len(x_batch)
pbr_batch.update(batch_size, {})
pbr_batch.refresh()
# clear cuda cache
if "cuda" in self.device:
torch.cuda.empty_cache()
# for better tqdm progress bar display
if self.verbose > 1:
pbr_batch.close()
# calculate and print validation performance metrics
scores_vld = torch.cat(scores_vld)
y_true_vld = torch.cat(y_true_vld)
y_mask_vld = torch.cat(y_mask_vld)
y_pred_vld = (scores_vld > 0).to(torch.int)
y_prob_vld = torch.sigmoid(scores_vld)
met_vld = get_metrics_multitask(
y_true_vld.numpy(),
y_pred_vld.numpy(),
y_prob_vld.numpy(),
y_mask_vld.numpy()
)
# add loss to metrics
for i in range(len(self.tgt_modalities)):
met_vld[i]['Loss'] = np.mean(losses_vld[i])
wandb.log({f"Validation loss {list(self.tgt_modalities)[i]}": met_vld[i]['Loss'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation Balanced Accuracy {list(self.tgt_modalities)[i]}": met_vld[i]['Balanced Accuracy'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUC (ROC) {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (ROC)'] for i in range(len(self.tgt_modalities))}, step=epoch)
wandb.log({f"Validation AUPR {list(self.tgt_modalities)[i]}": met_vld[i]['AUC (PR)'] for i in range(len(self.tgt_modalities))}, step=epoch)
if self.verbose > 2:
print_metrics_multitask(met_vld)
return met_vld
def save(self, filepath: str, epoch: int = 0) -> None:
''' ... '''
check_is_fitted(self)
if self.data_parallel:
state_dict = self.net_.module.state_dict()
else:
state_dict = self.net_.state_dict()
# attach model hyper parameters
state_dict['tgt_modalities'] = self.tgt_modalities
state_dict['optimizer'] = self.optimizer
state_dict['bn_size'] = self.bn_size
state_dict['growth_rate'] = self.growth_rate
state_dict['block_config'] = self.block_config
state_dict['compression'] = self.compression
state_dict['num_init_features'] = self.num_init_features
state_dict['drop_rate'] = self.drop_rate
state_dict['epoch'] = epoch
if self.scaler is not None:
state_dict['scaler'] = self.scaler.state_dict()
if self.label_distribution:
state_dict['label_distribution'] = self.label_distribution
torch.save(state_dict, filepath)
def load(self, filepath: str, map_location: str = 'cpu', how='latest') -> None:
''' ... '''
# load state_dict
if how == 'latest':
if torch.load(filepath)['epoch'] > torch.load(f'{filepath[:-3]}_AUPR.pt')['epoch']:
print("Loading model saved using AUROC")
state_dict = torch.load(filepath, map_location=map_location)
else:
print("Loading model saved using AUPR")
state_dict = torch.load(f'{filepath[:-3]}_AUPR.pt', map_location=map_location)
else:
state_dict = torch.load(filepath, map_location=map_location)
# load data modalities
self.tgt_modalities: dict[str, dict[str, Any]] = state_dict.pop('tgt_modalities')
if 'label_distribution' in state_dict:
self.label_distribution: dict[str, dict[int, int]] = state_dict.pop('label_distribution')
if 'optimizer' in state_dict:
self.optimizer = state_dict.pop('optimizer')
if 'bn_size' in state_dict:
self.bn_size = state_dict.pop('bn_size')
if 'growth_rate' in state_dict:
self.growth_rate = state_dict.pop('growth_rate')
if 'block_config' in state_dict:
self.block_config = state_dict.pop('block_config')
if 'compression' in state_dict:
self.compression = state_dict.pop('compression')
if 'num_init_features' in state_dict:
self.num_init_features = state_dict.pop('num_init_features')
if 'drop_rate' in state_dict:
self.drop_rate = state_dict.pop('drop_rate')
if 'epoch' in state_dict:
self.start_epoch = state_dict.pop('epoch')
print(f'Epoch: {self.start_epoch}')
# initialize model
self.net_ = get_backend(self.img_backend)(
tgt_modalities = self.tgt_modalities,
bn_size = self.bn_size,
growth_rate=self.growth_rate,
block_config=self.block_config,
compression=self.compression,
num_init_features=self.num_init_features,
drop_rate=self.drop_rate,
load_from_ckpt=self.load_from_ckpt
)
print(self.net_)
if 'scaler' in state_dict and state_dict['scaler']:
self.scaler.load_state_dict(state_dict.pop('scaler'))
self.net_.load_state_dict(state_dict)
check_is_fitted(self)
self.net_.to(self.device)
def to(self, device: str) -> Self:
''' Mount model to the given device. '''
self.device = device
if hasattr(self, 'model'): self.net_ = self.net_.to(device)
return self
@classmethod
def from_ckpt(cls, filepath: str, device='cpu', img_backend=None, load_from_ckpt=True, how='latest') -> Self:
''' ... '''
obj = cls(None, None, None,device=device)
if device == 'cuda':
obj.device = "{}:{}".format(obj.device, str(obj.cuda_devices[0]))
print(obj.device)
obj.img_backend=img_backend
obj.load_from_ckpt = load_from_ckpt
obj.load(filepath, map_location=obj.device, how=how)
return obj
def _init_net(self):
""" ... """
self.start_epoch = 0
# set the device for use
if self.device == 'cuda':
self.device = "{}:{}".format(self.device, str(self.cuda_devices[0]))
# self.load(self.ckpt_path, map_location=self.device)
# print("Loading model from checkpoint...")
# self.load(self.ckpt_path, map_location=self.device)
if self.load_from_ckpt:
try:
print("Loading model from checkpoint...")
self.load(self.ckpt_path, map_location=self.device)
except:
print("Cannot load from checkpoint. Initializing new model...")
self.load_from_ckpt = False
if not self.load_from_ckpt:
self.net_ = get_backend(self.img_backend)(
tgt_modalities = self.tgt_modalities,
bn_size = self.bn_size,
growth_rate=self.growth_rate,
block_config=self.block_config,
compression=self.compression,
num_init_features=self.num_init_features,
drop_rate=self.drop_rate,
load_from_ckpt=self.load_from_ckpt
)
# # intialize model parameters using xavier_uniform
# for p in self.net_.parameters():
# if p.dim() > 1:
# torch.nn.init.xavier_uniform_(p)
self.net_.to(self.device)
# Initialize the number of GPUs
if self.data_parallel and torch.cuda.device_count() > 1:
print("Available", torch.cuda.device_count(), "GPUs!")
self.net_ = torch.nn.DataParallel(self.net_, device_ids=self.cuda_devices)
# return net
def _init_dataloader(self, trn_list, vld_list, img_train_trans=None, img_vld_trans=None):
# def _init_dataloader(self, x, y):
""" ... """
# # split dataset
# x_trn, x_vld, y_trn, y_vld = train_test_split(
# x, y, test_size = 0.2, random_state = 0,
# )
# # initialize dataset and dataloader
# dat_trn = CNNTrainingValidationDataset(
# x_trn, y_trn,
# self.tgt_modalities,
# img_transform=img_train_trans,
# )
# dat_vld = CNNTrainingValidationDataset(
# x_vld, y_vld,
# self.tgt_modalities,
# img_transform=img_vld_trans,
# )
dat_trn = monai.data.Dataset(data=trn_list, transform=img_train_trans)
dat_vld = monai.data.Dataset(data=vld_list, transform=img_vld_trans)
collate_fn_trn = functools.partial(collate_handle_corrupted, dataset=dat_trn, dtype=torch.FloatTensor, labels=self.tgt_modalities)
collate_fn_vld = functools.partial(collate_handle_corrupted, dataset=dat_vld, dtype=torch.FloatTensor, labels=self.tgt_modalities)
ldr_trn = DataLoader(
dataset = dat_trn,
batch_size = self.batch_size,
shuffle = True,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = collate_fn_trn,
# pin_memory = True
)
ldr_vld = DataLoader(
dataset = dat_vld,
batch_size = self.batch_size,
shuffle = False,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = collate_fn_vld,
# pin_memory = True
)
return ldr_trn, ldr_vld
def _init_optimizer(self):
""" ... """
params = list(self.net_.parameters())
# for p in params:
# print(p.requires_grad)
return torch.optim.AdamW(
params,
lr = self.lr,
betas = (0.9, 0.98),
weight_decay = self.weight_decay
)
def _init_scheduler(self, optimizer):
""" ... """
# return torch.optim.lr_scheduler.OneCycleLR(
# optimizer = optimizer,
# max_lr = self.lr,
# total_steps = self.num_epochs,
# verbose = (self.verbose > 2)
# )
# return torch.optim.lr_scheduler.CosineAnnealingLR(
# optimizer=optimizer,
# T_max=64,
# verbose=(self.verbose > 2)
# )
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(
optimizer=optimizer,
T_0=64,
T_mult=2,
eta_min = 0,
verbose=(self.verbose > 2)
)
def _init_loss_func(self,
num_per_cls: dict[str, tuple[int, int]],
) -> dict[str, Module]:
""" ... """
return {k: nn.SigmoidFocalLossBeta(
beta = self.beta,
gamma = self.gamma,
num_per_cls = num_per_cls[k],
reduction = 'none',
) for k in self.tgt_modalities}
def _proc_fit(self):
""" ... """
def _init_test_dataloader(self, batch_size, tst_list, img_tst_trans=None):
# input validation
check_is_fitted(self)
print(self.device)
# for PyTorch computational efficiency
torch.set_num_threads(1)
# set model to eval mode
torch.set_grad_enabled(False)
self.net_.eval()
dat_tst = monai.data.Dataset(data=tst_list, transform=img_tst_trans)
collate_fn_tst = functools.partial(collate_handle_corrupted, dataset=dat_tst, dtype=torch.FloatTensor, labels=self.tgt_modalities)
# print(collate_fn_tst)
ldr_tst = DataLoader(
dataset = dat_tst,
batch_size = batch_size,
shuffle = False,
drop_last = False,
num_workers = self._dataloader_num_workers,
collate_fn = collate_fn_tst,
# pin_memory = True
)
return ldr_tst
def predict_logits(self,
ldr_tst: Any | None = None,
) -> list[dict[str, float]]:
# run model and collect results
logits: list[dict[str, float]] = []
for batch_data in tqdm(ldr_tst):
# print(batch_data["image"])
if len(batch_data) == 0:
continue
x_batch = batch_data["image"].to(self.device, non_blocking=True)
outputs = self.net_(x_batch, shap=False)
# convert output from dict-of-list to list of dict, then append
tmp = {k: outputs[k].tolist() for k in self.tgt_modalities}
tmp = [{k: tmp[k][i] for k in self.tgt_modalities} for i in range(len(next(iter(tmp.values()))))]
logits += tmp
return logits
def predict_proba(self,
ldr_tst: Any | None = None,
temperature: float = 1.0,
) -> list[dict[str, float]]:
''' ... '''
logits = self.predict_logits(ldr_tst)
print("got logits")
return logits, [{k: expit(smp[k] / temperature) for k in self.tgt_modalities} for smp in logits]
def predict(self,
ldr_tst: Any | None = None,
) -> list[dict[str, int]]:
''' ... '''
logits, proba = self.predict_proba(ldr_tst)
print("got proba")
return logits, proba, [{k: int(smp[k] > 0.5) for k in self.tgt_modalities} for smp in proba] |