Spaces:
Running
Running
File size: 12,126 Bytes
5dfbe50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import { Hono } from 'hono';
import { streamSSE } from 'hono/streaming';
import { v4 as uuidv4 } from 'uuid';
import { z } from 'zod';
import { config } from '../config';
import { cache } from '../services/cache';
import { vespaRequest } from '../services/vespa-https';
const backendApi = new Hono();
// Search request schema
const searchQuerySchema = z.object({
query: z.string().min(1).max(500),
ranking: z.enum(['hybrid', 'colpali', 'bm25']).optional().default('hybrid'),
});
// Main search endpoint - /fetch_results
backendApi.get('/fetch_results', async (c) => {
try {
const query = c.req.query('query');
const ranking = c.req.query('ranking') || 'hybrid';
const validation = searchQuerySchema.safeParse({ query, ranking });
if (!validation.success) {
return c.json({ error: 'Invalid request', details: validation.error.issues }, 400);
}
const validatedData = validation.data;
// Check cache
const cacheKey = `search:${validatedData.query}:${validatedData.ranking}`;
const cachedResult = cache.get(cacheKey);
if (cachedResult) {
c.header('X-Cache', 'HIT');
return c.json(cachedResult);
}
// Build YQL query based on ranking
let yql = '';
let searchParams: any = {
query: validatedData.query,
hits: '20'
};
switch (validatedData.ranking) {
case 'colpali':
// Use retrieval-and-rerank profile for ColPali
yql = `select * from linqto where userQuery() limit 20`;
searchParams.ranking = 'retrieval-and-rerank';
break;
case 'bm25':
yql = `select * from linqto where userQuery() limit 20`;
searchParams.ranking = 'default';
break;
case 'hybrid':
default:
yql = `select * from linqto where userQuery() limit 20`;
searchParams.ranking = 'default';
break;
}
// For ColPali ranking, we need embeddings
let body: any = {};
let useNearestNeighbor = false;
if (validatedData.ranking === 'colpali') {
try {
// Call embedding API to get query embeddings
const embeddingResponse = await fetch(
`http://localhost:7861/embed_query?query=${encodeURIComponent(validatedData.query)}`
);
if (embeddingResponse.ok) {
const embeddingData = await embeddingResponse.json();
// Create nearestNeighbor query string
const numTokens = Object.keys(embeddingData.embeddings.binary).length;
const maxTokens = Math.min(numTokens, 20); // Limit to 20 tokens to avoid timeouts
const nnClauses = [];
// Add individual rq tensors for nearestNeighbor
for (let i = 0; i < maxTokens; i++) {
body[`input.query(rq${i})`] = embeddingData.embeddings.binary[i.toString()];
nnClauses.push(`({targetHits:10}nearestNeighbor(embedding,rq${i}))`);
}
// Update YQL for nearestNeighbor search
if (nnClauses.length > 0) {
yql = `select * from linqto where ${nnClauses.join(' OR ')} limit 20`;
useNearestNeighbor = true;
}
// Add qt and qtb for ranking
body["input.query(qt)"] = embeddingData.embeddings.float;
body["input.query(qtb)"] = embeddingData.embeddings.binary;
body["presentation.timing"] = true;
} else {
// Fall back to text-only search
searchParams.ranking = 'default';
}
} catch (error) {
console.log('Embedding API not available, falling back to text search');
searchParams.ranking = 'default';
}
}
// Query Vespa directly
const searchUrl = `${config.vespaAppUrl}/search/`;
const urlSearchParams = new URLSearchParams({
yql,
...searchParams
});
// Use ranking.profile for Vespa instead of ranking
if (searchParams.ranking) {
urlSearchParams.delete('ranking');
urlSearchParams.set('ranking.profile', searchParams.ranking);
}
const startTime = Date.now();
let requestOptions: any = {};
// Only use POST with body if we have embeddings
if (Object.keys(body).length > 0) {
requestOptions = {
method: 'POST',
headers: {
'Content-Type': 'application/json',
},
body: JSON.stringify(body)
};
} else {
requestOptions = {
method: 'GET'
};
}
console.log('Vespa query URL:', `${searchUrl}?${urlSearchParams}`);
console.log('Request options:', requestOptions);
const response = await vespaRequest(`${searchUrl}?${urlSearchParams}`, requestOptions);
if (!response.ok && response.status !== 504) {
const errorText = await response.text();
console.error('Vespa error:', errorText);
throw new Error(`Vespa returned ${response.status}: ${errorText}`);
}
const data = await response.json();
const searchTime = (Date.now() - startTime) / 1000; // Convert to seconds
// Generate query_id for sim_map compatibility
const queryId = uuidv4();
// Transform to match expected format
if (data.root && data.root.children) {
data.root.children.forEach((hit: any, idx: number) => {
if (!hit.fields) hit.fields = {};
// Add sim_map identifier for compatibility
hit.fields.sim_map = `${queryId}_${idx}`;
});
}
// Add timing information
data.timing = {
searchtime: searchTime
};
// Cache the result
cache.set(cacheKey, data);
c.header('X-Cache', 'MISS');
return c.json(data);
} catch (error) {
console.error('Search error:', error);
return c.json({
error: 'Search failed',
message: error instanceof Error ? error.message : 'Unknown error'
}, 500);
}
});
// Full image endpoint - /full_image
backendApi.get('/full_image', async (c) => {
try {
const docId = c.req.query('doc_id'); // Note: backend expects doc_id, not docId
if (!docId) {
return c.json({ error: 'doc_id is required' }, 400);
}
// Check cache
const cacheKey = `fullimage:${docId}`;
const cachedImage = cache.get<{ base64_image: string }>(cacheKey);
if (cachedImage) {
c.header('X-Cache', 'HIT');
return c.json(cachedImage);
}
// Query Vespa for the document
const searchUrl = `${config.vespaAppUrl}/search/`;
const searchParams = new URLSearchParams({
yql: `select * from linqto where id contains "${docId}"`,
hits: '1'
});
const response = await vespaRequest(`${searchUrl}?${searchParams}`);
if (!response.ok) {
throw new Error(`Vespa returned ${response.status}`);
}
const data = await response.json();
if (data.root?.children?.[0]?.fields) {
const fields = data.root.children[0].fields;
const base64Image = fields.full_image || fields.image;
if (base64Image) {
const result = { base64_image: base64Image };
cache.set(cacheKey, result, 86400); // 24 hours
c.header('X-Cache', 'MISS');
return c.json(result);
}
}
return c.json({ error: 'Image not found' }, 404);
} catch (error) {
console.error('Full image error:', error);
return c.json({
error: 'Failed to fetch image',
message: error instanceof Error ? error.message : 'Unknown error'
}, 500);
}
});
// Query suggestions endpoint - /suggestions
backendApi.get('/suggestions', async (c) => {
try {
const query = c.req.query('query') || '';
// Static suggestions for now
const staticSuggestions = [
'linqto bankruptcy',
'linqto filing date',
'linqto creditors',
'linqto assets',
'linqto liabilities',
'linqto chapter 11',
'linqto docket',
'linqto plan',
'linqto disclosure statement',
'linqto claims',
];
if (!query) {
return c.json({ suggestions: staticSuggestions.slice(0, 5) });
}
const lowerQuery = query.toLowerCase();
const filtered = staticSuggestions
.filter(s => s.startsWith(lowerQuery))
.slice(0, 5);
return c.json({ suggestions: filtered });
} catch (error) {
console.error('Suggestions error:', error);
return c.json({
error: 'Failed to fetch suggestions',
suggestions: []
}, 500);
}
});
// Similarity maps endpoint - /get_sim_map
backendApi.get('/get_sim_map', async (c) => {
try {
const queryId = c.req.query('query_id'); // Note: backend expects query_id
const idx = c.req.query('idx');
const token = c.req.query('token');
const tokenIdx = c.req.query('token_idx'); // Note: backend expects token_idx
if (!queryId || !idx || !token || !tokenIdx) {
return c.json({ error: 'Missing required parameters' }, 400);
}
// Return placeholder HTML
const html = `
<div style="padding: 20px; text-align: center;">
<h3>Similarity Map</h3>
<p>Query: ${token}</p>
<p>Document: ${idx}</p>
<p style="color: #666;">
Similarity map generation requires the ColPali model.
This is a placeholder for the demo.
</p>
</div>
`;
return c.html(html);
} catch (error) {
console.error('Similarity map error:', error);
return c.json({
error: 'Failed to generate similarity map',
message: error instanceof Error ? error.message : 'Unknown error'
}, 500);
}
});
// Visual RAG Chat SSE endpoint - /get-message
backendApi.get('/get-message', async (c) => {
const queryId = c.req.query('query_id'); // Note: backend expects query_id
const query = c.req.query('query');
const docIds = c.req.query('doc_ids'); // Note: backend expects doc_ids
if (!queryId || !query || !docIds) {
return c.json({ error: 'Missing required parameters: query_id, query, doc_ids' }, 400);
}
return streamSSE(c, async (stream) => {
try {
// Mock response for now - in production this would use an LLM
// Extract key information from the query
const messages = [];
if (query.toLowerCase().includes('when') && query.toLowerCase().includes('file')) {
messages.push(
`I'll analyze the search results for your query: "${query}"`,
"",
"Based on the documents provided:",
"",
"**LINQTO filed for Chapter 11 bankruptcy on July 7, 2025**",
"",
"The filing was made in the United States Bankruptcy Court for the Southern District of Texas under case number 25-90186.",
"",
"Key details:",
"• Filing Date: July 7, 2025 (Petition Date)",
"• Court: Southern District of Texas",
"• Case Number: 25-90186",
"• Chapter: 11 (Reorganization)",
"",
"This is a demo response. In production, an LLM would analyze the actual document contents for more details."
);
} else {
messages.push(
`I'll analyze the search results for your query: "${query}"`,
"Based on the documents provided, here are the key findings:",
"1. LINQTO filed for Chapter 11 bankruptcy protection on July 7, 2025",
"2. The filing includes detailed financial statements and creditor information",
"3. Various claims and assets are documented in the court filings",
"",
"This is a demo response. In production, this would analyze the actual document contents using an LLM."
);
}
for (const msg of messages) {
await stream.writeSSE({ data: msg });
await new Promise(resolve => setTimeout(resolve, 500)); // Simulate typing delay
}
} catch (error) {
console.error('Chat streaming error:', error);
await stream.writeSSE({
event: 'error',
data: JSON.stringify({
error: 'Streaming failed',
message: error instanceof Error ? error.message : 'Unknown error'
}),
});
}
});
});
export { backendApi }; |