File size: 4,137 Bytes
9c4b01e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from dotenv import load_dotenv
import os
from prediction import genconvit_video_prediction
from utils.db import supabase_client
import json
import requests
from utils.utils import upload_file
import redis
from rq import Queue, Worker, Connection
import uvicorn
import torch
os.environ['TORCH_HOME'] = './cache'
torch.hub.set_dir('./cache')
os.environ["HUGGINGFACE_HUB_CACHE"] = "./cache"

load_dotenv()

# Environment variables
R2_ACCESS_KEY = os.getenv('R2_ACCESS_KEY')
R2_SECRET_KEY = os.getenv('R2_SECRET_KEY')
R2_BUCKET_NAME = os.getenv('R2_BUCKET_NAME')
R2_ENDPOINT_URL = os.getenv('R2_ENDPOINT_URL')
UPSTASH_REDIS_REST_URL = os.getenv('UPSTASH_REDIS_REST_URL')
UPSTASH_REDIS_REST_TOKEN = os.getenv('UPSTASH_REDIS_REST_TOKEN')

# Redis connection
r = redis.Redis(
    host=UPSTASH_REDIS_REST_URL,
    port=6379,
    password=UPSTASH_REDIS_REST_TOKEN,
    ssl=True
)

q = Queue('video-predictions', connection=r)

# FastAPI initialization
app = FastAPI()

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Update with your domain
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Pydantic models for request validation
class PredictionRequest(BaseModel):
    video_url: str
    query_id: str

class DetectFacesRequest(BaseModel):
    video_url: str

# Prediction queue resolver
def predictionQueueResolver(prediction_data):
    data = json.loads(prediction_data)
    video_url = data['mediaUrl']
    query_id = data['queryId']
    if not video_url:
        raise HTTPException(status_code=400, detail="No video URL provided")
    
    try:
        result = genconvit_video_prediction(video_url)
        output = {
            "fd": "0",
            "gan": "0",
            "wave_grad": "0",
            "wave_rnn": "0"
        }
        transaction = {
            "status": "success",
            "score": result['score'],
            "output": json.dumps(output),
        }
        print(result)
        supabase_client.table('Result').update(transaction).eq('query_id', query_id).execute()
        return result
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# @app.get("/")
# def health():
#     return "APP is Ready"

    
# @app.get("/health")
# def health():
#     return "Healthy AI API"

@app.post("/predict")
def predict(request: PredictionRequest):
    try:
        result = genconvit_video_prediction(request.video_url)
        output = {
            "fd": "0",
            "gan": "0",
            "wave_grad": "0",
            "wave_rnn": "0"
        }
        transaction = {
            "status": "success",
            "score": result['score'],
            "output": json.dumps(output),
        }
        supabase_client.table('Result').update(transaction).eq('query_id', request.query_id).execute()
        return result
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/detect-faces")
def detect_faces(request: DetectFacesRequest):
    try:
        frames = detect_faces(request.video_url)
        
        res = []
        for frame in frames:
            upload_file(f'{frame}', 'outputs', frame.split('/')[-1], R2_ENDPOINT_URL, R2_ACCESS_KEY, R2_SECRET_KEY)
            res.append(f'https://pub-08a118f4cb7c4b208b55e6877b0bacca.r2.dev/outputs/{frame.split("/")[-1]}')
        
        return res
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

# Uncomment to start worker and fetch queue data
# def fetch_and_enqueue():
#     response = requests.get(UPSTASH_REDIS_REST_URL)
#     if response.status_code == 200:
#         data = response.json()
#         for item in data['items']:
#             prediction_data = item.get('prediction')
#             q.enqueue(predictionQueueResolver, prediction_data)

if __name__ == '__main__':
    uvicorn.run(app, host='0.0.0.0', port=8000)
    # with Connection(r):
    #     worker = Worker([q])
    #     worker.work()
    # fetch_and_enqueue()