File size: 3,028 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch

import folder_paths
import nodes as comfy_nodes
from comfy.model_patcher import ModelPatcher
from comfy.sd import load_checkpoint_guess_config

from .logger import logger
from .utils_model import BetaSchedules
from .model_injection import get_vanilla_model_patcher


class AnimateDiffUnload:
    def __init__(self) -> None:
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"model": ("MODEL",)}}

    RETURN_TYPES = ("MODEL",)
    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/extras"
    FUNCTION = "unload_motion_modules"

    def unload_motion_modules(self, model: ModelPatcher):
        # return model clone with ejected params
        #model = eject_params_from_model(model)
        model = get_vanilla_model_patcher(model)
        return (model.clone(),)


class CheckpointLoaderSimpleWithNoiseSelect:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                "beta_schedule": (BetaSchedules.ALIAS_LIST, {"default": BetaSchedules.USE_EXISTING}, )
            },
            "optional": {
                "use_custom_scale_factor": ("BOOLEAN", {"default": False}),
                "scale_factor": ("FLOAT", {"default": 0.18215, "min": 0.0, "max": 1.0, "step": 0.00001})
            }
        }
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/extras"

    def load_checkpoint(self, ckpt_name, beta_schedule, output_vae=True, output_clip=True, use_custom_scale_factor=False, scale_factor=0.18215):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        # register chosen beta schedule on model - convert to beta_schedule name recognized by ComfyUI
        new_model_sampling = BetaSchedules.to_model_sampling(beta_schedule, out[0])
        if new_model_sampling is not None:
            out[0].model.model_sampling = new_model_sampling
        if use_custom_scale_factor:
            out[0].model.latent_format.scale_factor = scale_factor
        return out


class EmptyLatentImageLarge:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": comfy_nodes.MAX_RESOLUTION, "step": 8}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 262144})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

    CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/extras"

    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
        return ({"samples":latent}, )