File size: 25,504 Bytes
613c9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import math
import impact.core as core
from impact.utils import *
from nodes import MAX_RESOLUTION
import nodes
from impact.impact_sampling import KSamplerWrapper, KSamplerAdvancedWrapper


class TiledKSamplerProvider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                    "tile_width": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
                    "tile_height": ("INT", {"default": 512, "min": 320, "max": MAX_RESOLUTION, "step": 64}),
                    "tiling_strategy": (["random", "padded", 'simple'], ),
                    "basic_pipe": ("BASIC_PIPE", )
                    }}

    RETURN_TYPES = ("KSAMPLER",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    def doit(self, seed, steps, cfg, sampler_name, scheduler, denoise,
             tile_width, tile_height, tiling_strategy, basic_pipe):
        model, _, _, positive, negative = basic_pipe
        sampler = core.TiledKSamplerWrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise,
                                            tile_width, tile_height, tiling_strategy)
        return (sampler, )


class KSamplerProvider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                                "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                                "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                                "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                                "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                                "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                                "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                                "basic_pipe": ("BASIC_PIPE", )
                             },
                }

    RETURN_TYPES = ("KSAMPLER",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    def doit(self, seed, steps, cfg, sampler_name, scheduler, denoise, basic_pipe):
        model, _, _, positive, negative = basic_pipe
        sampler = KSamplerWrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise)
        return (sampler, )


class KSamplerAdvancedProvider:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                                "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                                "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                                "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                                "sigma_factor": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                                "basic_pipe": ("BASIC_PIPE", )
                             },
                "optional": {
                                "sampler_opt": ("SAMPLER", )
                            }
                }

    RETURN_TYPES = ("KSAMPLER_ADVANCED",)
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    def doit(self, cfg, sampler_name, scheduler, basic_pipe, sigma_factor=1.0, sampler_opt=None):
        model, _, _, positive, negative = basic_pipe
        sampler = KSamplerAdvancedWrapper(model, cfg, sampler_name, scheduler, positive, negative, sampler_opt=sampler_opt, sigma_factor=sigma_factor)
        return (sampler, )


class TwoSamplersForMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "latent_image": ("LATENT", ),
                     "base_sampler": ("KSAMPLER", ),
                     "mask_sampler": ("KSAMPLER", ),
                     "mask": ("MASK", )
                     },
                }

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    def doit(self, latent_image, base_sampler, mask_sampler, mask):
        inv_mask = torch.where(mask != 1.0, torch.tensor(1.0), torch.tensor(0.0))

        latent_image['noise_mask'] = inv_mask
        new_latent_image = base_sampler.sample(latent_image)

        new_latent_image['noise_mask'] = mask
        new_latent_image = mask_sampler.sample(new_latent_image)

        del new_latent_image['noise_mask']

        return (new_latent_image, )


class TwoAdvancedSamplersForMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     "samples": ("LATENT", ),
                     "base_sampler": ("KSAMPLER_ADVANCED", ),
                     "mask_sampler": ("KSAMPLER_ADVANCED", ),
                     "mask": ("MASK", ),
                     "overlap_factor": ("INT", {"default": 10, "min": 0, "max": 10000})
                     },
                }

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Sampler"

    @staticmethod
    def mask_erosion(samples, mask, grow_mask_by):
        mask = mask.clone()

        w = samples['samples'].shape[3]
        h = samples['samples'].shape[2]

        mask2 = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(w, h), mode="bilinear")
        if grow_mask_by == 0:
            mask_erosion = mask2
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask2.round(), kernel_tensor, padding=padding), 0, 1)

        return mask_erosion[:, :, :w, :h].round()

    def doit(self, seed, steps, denoise, samples, base_sampler, mask_sampler, mask, overlap_factor):

        inv_mask = torch.where(mask != 1.0, torch.tensor(1.0), torch.tensor(0.0))

        adv_steps = int(steps / denoise)
        start_at_step = adv_steps - steps

        new_latent_image = samples.copy()

        mask_erosion = TwoAdvancedSamplersForMask.mask_erosion(samples, mask, overlap_factor)

        for i in range(start_at_step, adv_steps):
            add_noise = "enable" if i == start_at_step else "disable"
            return_with_leftover_noise = "enable" if i+1 != adv_steps else "disable"

            new_latent_image['noise_mask'] = inv_mask
            new_latent_image = base_sampler.sample_advanced(add_noise, seed, adv_steps, new_latent_image, i, i + 1, "enable", recovery_mode="ratio additional")

            new_latent_image['noise_mask'] = mask_erosion
            new_latent_image = mask_sampler.sample_advanced("disable", seed, adv_steps, new_latent_image, i, i + 1, return_with_leftover_noise, recovery_mode="ratio additional")

        del new_latent_image['noise_mask']

        return (new_latent_image, )


class RegionalPrompt:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "mask": ("MASK", ),
                     "advanced_sampler": ("KSAMPLER_ADVANCED", ),
                     },
                }

    RETURN_TYPES = ("REGIONAL_PROMPTS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    def doit(self, mask, advanced_sampler):
        regional_prompt = core.REGIONAL_PROMPT(mask, advanced_sampler)
        return ([regional_prompt], )


class CombineRegionalPrompts:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "regional_prompts1": ("REGIONAL_PROMPTS", ),
                     },
                }

    RETURN_TYPES = ("REGIONAL_PROMPTS", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    def doit(self, **kwargs):
        res = []
        for k, v in kwargs.items():
            res += v

        return (res, )


class CombineConditionings:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "conditioning1": ("CONDITIONING", ),
                     },
                }

    RETURN_TYPES = ("CONDITIONING", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Util"

    def doit(self, **kwargs):
        res = []
        for k, v in kwargs.items():
            res += v

        return (res, )
    

class ConcatConditionings:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "conditioning1": ("CONDITIONING", ),
                     },
                }

    RETURN_TYPES = ("CONDITIONING", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Util"

    def doit(self, **kwargs):
        conditioning_to = list(kwargs.values())[0]

        for k, conditioning_from in list(kwargs.items())[1:]:
            out = []
            if len(conditioning_from) > 1:
                print("Warning: ConcatConditionings {k} contains more than 1 cond, only the first one will actually be applied to conditioning1.")

            cond_from = conditioning_from[0][0]

            for i in range(len(conditioning_to)):
                t1 = conditioning_to[i][0]
                tw = torch.cat((t1, cond_from), 1)
                n = [tw, conditioning_to[i][1].copy()]
                out.append(n)

            conditioning_to = out

        return (out, )
    
    
class RegionalSampler:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "seed_2nd": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "seed_2nd_mode": (["ignore", "fixed", "seed+seed_2nd", "seed-seed_2nd", "increment", "decrement", "randomize"], ),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "base_only_steps": ("INT", {"default": 2, "min": 0, "max": 10000}),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     "samples": ("LATENT", ),
                     "base_sampler": ("KSAMPLER_ADVANCED", ),
                     "regional_prompts": ("REGIONAL_PROMPTS", ),
                     "overlap_factor": ("INT", {"default": 10, "min": 0, "max": 10000}),
                     "restore_latent": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
                     "additional_mode": (["DISABLE", "ratio additional", "ratio between"], {"default": "ratio between"}),
                     "additional_sampler": (["AUTO", "euler", "heun", "heunpp2", "dpm_2", "dpm_fast", "dpmpp_2m", "ddpm"],),
                     "additional_sigma_ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                     },
                 "hidden": {"unique_id": "UNIQUE_ID"},
                }

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    @staticmethod
    def mask_erosion(samples, mask, grow_mask_by):
        mask = mask.clone()

        w = samples['samples'].shape[3]
        h = samples['samples'].shape[2]

        mask2 = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(w, h), mode="bilinear")
        if grow_mask_by == 0:
            mask_erosion = mask2
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask2.round(), kernel_tensor, padding=padding), 0, 1)

        return mask_erosion[:, :, :w, :h].round()

    def doit(self, seed, seed_2nd, seed_2nd_mode, steps, base_only_steps, denoise, samples, base_sampler, regional_prompts, overlap_factor, restore_latent,
             additional_mode, additional_sampler, additional_sigma_ratio, unique_id=None):
        if restore_latent:
            latent_compositor = nodes.NODE_CLASS_MAPPINGS['LatentCompositeMasked']()
        else:
            latent_compositor = None

        masks = [regional_prompt.mask.numpy() for regional_prompt in regional_prompts]
        masks = [np.ceil(mask).astype(np.int32) for mask in masks]
        combined_mask = torch.from_numpy(np.bitwise_or.reduce(masks))

        inv_mask = torch.where(combined_mask == 0, torch.tensor(1.0), torch.tensor(0.0))

        adv_steps = int(steps / denoise)
        start_at_step = adv_steps - steps

        region_len = len(regional_prompts)
        total = steps*region_len

        leftover_noise = False
        if base_only_steps > 0:
            if seed_2nd_mode == 'ignore':
                leftover_noise = True

            samples = base_sampler.sample_advanced(True, seed, adv_steps, samples, start_at_step, start_at_step + base_only_steps, leftover_noise, recovery_mode="DISABLE")

        if seed_2nd_mode == "seed+seed_2nd":
            seed += seed_2nd
            if seed > 1125899906842624:
                seed = seed - 1125899906842624
        elif seed_2nd_mode == "seed-seed_2nd":
            seed -= seed_2nd
            if seed < 0:
                seed += 1125899906842624
        elif seed_2nd_mode != 'ignore':
            seed = seed_2nd

        new_latent_image = samples.copy()
        base_latent_image = None

        if not leftover_noise:
            add_noise = True
        else:
            add_noise = False

        for i in range(start_at_step+base_only_steps, adv_steps):
            core.update_node_status(unique_id, f"{i}/{steps} steps  |         ", ((i-start_at_step)*region_len)/total)

            new_latent_image['noise_mask'] = inv_mask
            new_latent_image = base_sampler.sample_advanced(add_noise, seed, adv_steps, new_latent_image, i, i + 1, True,
                                                            recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

            if restore_latent:
                if 'noise_mask' in new_latent_image:
                    del new_latent_image['noise_mask']
                base_latent_image = new_latent_image.copy()

            j = 1
            for regional_prompt in regional_prompts:
                if restore_latent:
                    new_latent_image = base_latent_image.copy()

                core.update_node_status(unique_id, f"{i}/{steps} steps  |  {j}/{region_len}", ((i-start_at_step)*region_len + j)/total)

                region_mask = regional_prompt.get_mask_erosion(overlap_factor).squeeze(0).squeeze(0)

                new_latent_image['noise_mask'] = region_mask
                new_latent_image = regional_prompt.sampler.sample_advanced(False, seed, adv_steps, new_latent_image, i, i + 1, True,
                                                                           recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

                if restore_latent:
                    del new_latent_image['noise_mask']
                    base_latent_image = latent_compositor.composite(base_latent_image, new_latent_image, 0, 0, False, region_mask)[0]
                    new_latent_image = base_latent_image

                j += 1

            add_noise = False

        # finalize
        core.update_node_status(unique_id, f"finalize")
        if base_latent_image is not None:
            new_latent_image = base_latent_image
        else:
            base_latent_image = new_latent_image

        new_latent_image['noise_mask'] = inv_mask
        new_latent_image = base_sampler.sample_advanced(False, seed, adv_steps, new_latent_image, adv_steps, adv_steps+1, False,
                                                        recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

        core.update_node_status(unique_id, f"{steps}/{steps} steps", total)
        core.update_node_status(unique_id, "", None)

        if restore_latent:
            new_latent_image = base_latent_image

        if 'noise_mask' in new_latent_image:
            del new_latent_image['noise_mask']

        return (new_latent_image, )


class RegionalSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
                     "add_noise": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
                     "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                     "overlap_factor": ("INT", {"default": 10, "min": 0, "max": 10000}),
                     "restore_latent": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}),
                     "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enabled", "label_off": "disabled"}),
                     "latent_image": ("LATENT", ),
                     "base_sampler": ("KSAMPLER_ADVANCED", ),
                     "regional_prompts": ("REGIONAL_PROMPTS", ),
                     "additional_mode": (["DISABLE", "ratio additional", "ratio between"], {"default": "ratio between"}),
                     "additional_sampler": (["AUTO", "euler", "heun", "heunpp2", "dpm_2", "dpm_fast", "dpmpp_2m", "ddpm"],),
                     "additional_sigma_ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                     },
                 "hidden": {"unique_id": "UNIQUE_ID"},
                }

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "doit"

    CATEGORY = "ImpactPack/Regional"

    def doit(self, add_noise, noise_seed, steps, start_at_step, end_at_step, overlap_factor, restore_latent, return_with_leftover_noise, latent_image, base_sampler, regional_prompts,
             additional_mode, additional_sampler, additional_sigma_ratio, unique_id):

        if restore_latent:
            latent_compositor = nodes.NODE_CLASS_MAPPINGS['LatentCompositeMasked']()
        else:
            latent_compositor = None

        masks = [regional_prompt.mask.numpy() for regional_prompt in regional_prompts]
        masks = [np.ceil(mask).astype(np.int32) for mask in masks]
        combined_mask = torch.from_numpy(np.bitwise_or.reduce(masks))

        inv_mask = torch.where(combined_mask == 0, torch.tensor(1.0), torch.tensor(0.0))

        region_len = len(regional_prompts)
        end_at_step = min(steps, end_at_step)
        total = (end_at_step - start_at_step) * region_len

        new_latent_image = latent_image.copy()
        base_latent_image = None
        region_masks = {}

        for i in range(start_at_step, end_at_step-1):
            core.update_node_status(unique_id, f"{start_at_step+i}/{end_at_step} steps  |         ", ((i-start_at_step)*region_len)/total)

            cur_add_noise = True if i == start_at_step and add_noise else False

            new_latent_image['noise_mask'] = inv_mask
            new_latent_image = base_sampler.sample_advanced(cur_add_noise, noise_seed, steps, new_latent_image, i, i + 1, True,
                                                            recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

            if restore_latent:
                del new_latent_image['noise_mask']
                base_latent_image = new_latent_image.copy()

            j = 1
            for regional_prompt in regional_prompts:
                if restore_latent:
                    new_latent_image = base_latent_image.copy()

                core.update_node_status(unique_id, f"{start_at_step+i}/{end_at_step} steps  |  {j}/{region_len}", ((i-start_at_step)*region_len + j)/total)

                if j not in region_masks:
                    region_mask = regional_prompt.get_mask_erosion(overlap_factor).squeeze(0).squeeze(0)
                    region_masks[j] = region_mask
                else:
                    region_mask = region_masks[j]

                new_latent_image['noise_mask'] = region_mask
                new_latent_image = regional_prompt.sampler.sample_advanced(False, noise_seed, steps, new_latent_image, i, i + 1, True,
                                                                           recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

                if restore_latent:
                    del new_latent_image['noise_mask']
                    base_latent_image = latent_compositor.composite(base_latent_image, new_latent_image, 0, 0, False, region_mask)[0]
                    new_latent_image = base_latent_image

                j += 1

        # finalize
        core.update_node_status(unique_id, f"finalize")
        if base_latent_image is not None:
            new_latent_image = base_latent_image
        else:
            base_latent_image = new_latent_image

        new_latent_image['noise_mask'] = inv_mask
        new_latent_image = base_sampler.sample_advanced(False, noise_seed, steps, new_latent_image, end_at_step-1, end_at_step, return_with_leftover_noise,
                                                        recovery_mode=additional_mode, recovery_sampler=additional_sampler, recovery_sigma_ratio=additional_sigma_ratio)

        core.update_node_status(unique_id, f"{end_at_step}/{end_at_step} steps", total)
        core.update_node_status(unique_id, "", None)

        if restore_latent:
            new_latent_image = base_latent_image

        if 'noise_mask' in new_latent_image:
            del new_latent_image['noise_mask']

        return (new_latent_image, )


class KSamplerBasicPipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"basic_pipe": ("BASIC_PIPE",),
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                     "latent_image": ("LATENT", ),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     }
                }

    RETURN_TYPES = ("BASIC_PIPE", "LATENT", "VAE")
    FUNCTION = "sample"

    CATEGORY = "sampling"

    def sample(self, basic_pipe, seed, steps, cfg, sampler_name, scheduler, latent_image, denoise=1.0):
        model, clip, vae, positive, negative = basic_pipe
        latent = nodes.KSampler().sample(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise)[0]
        return basic_pipe, latent, vae


class KSamplerAdvancedBasicPipe:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"basic_pipe": ("BASIC_PIPE",),
                     "add_noise": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}),
                     "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                     "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                     "latent_image": ("LATENT", ),
                     "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                     "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                     "return_with_leftover_noise": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}),
                     }
                }

    RETURN_TYPES = ("BASIC_PIPE", "LATENT", "VAE")
    FUNCTION = "sample"

    CATEGORY = "sampling"

    def sample(self, basic_pipe, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
        model, clip, vae, positive, negative = basic_pipe

        if add_noise:
            add_noise = "enable"
        else:
            add_noise = "disable"

        if return_with_leftover_noise:
            return_with_leftover_noise = "enable"
        else:
            return_with_leftover_noise = "disable"

        latent = nodes.KSamplerAdvanced().sample(model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise)[0]
        return basic_pipe, latent, vae