Spaces:
Running
Running
File size: 15,197 Bytes
613c9ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
from typing import Callable, Optional, Union
import numpy as np
from torch import Tensor
from comfy.model_base import BaseModel
from .utils_motion import get_sorted_list_via_attr
class ContextFuseMethod:
FLAT = "flat"
PYRAMID = "pyramid"
RELATIVE = "relative"
LIST = [PYRAMID, FLAT]
LIST_STATIC = [PYRAMID, RELATIVE, FLAT]
class ContextType:
UNIFORM_WINDOW = "uniform window"
class ContextOptions:
def __init__(self, context_length: int=None, context_stride: int=None, context_overlap: int=None,
context_schedule: str=None, closed_loop: bool=False, fuse_method: str=ContextFuseMethod.FLAT,
use_on_equal_length: bool=False, view_options: 'ContextOptions'=None,
start_percent=0.0, guarantee_steps=1):
# permanent settings
self.context_length = context_length
self.context_stride = context_stride
self.context_overlap = context_overlap
self.context_schedule = context_schedule
self.closed_loop = closed_loop
self.fuse_method = fuse_method
self.sync_context_to_pe = False # this feature is likely bad and stay unused, so I might remove this
self.use_on_equal_length = use_on_equal_length
self.view_options = view_options.clone() if view_options else view_options
# scheduling
self.start_percent = float(start_percent)
self.start_t = 999999999.9
self.guarantee_steps = guarantee_steps
# temporary vars
self._step: int = 0
@property
def step(self):
return self._step
@step.setter
def step(self, value: int):
self._step = value
if self.view_options:
self.view_options.step = value
def clone(self):
n = ContextOptions(context_length=self.context_length, context_stride=self.context_stride,
context_overlap=self.context_overlap, context_schedule=self.context_schedule,
closed_loop=self.closed_loop, fuse_method=self.fuse_method,
use_on_equal_length=self.use_on_equal_length, view_options=self.view_options,
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
n.start_t = self.start_t
return n
class ContextOptionsGroup:
def __init__(self):
self.contexts: list[ContextOptions] = []
self._current_context: ContextOptions = None
self._current_used_steps: int = 0
self._current_index: int = 0
self.step = 0
def reset(self):
self._current_context = None
self._current_used_steps = 0
self._current_index = 0
self.step = 0
self._set_first_as_current()
@classmethod
def default(cls):
def_context = ContextOptions()
new_group = ContextOptionsGroup()
new_group.add(def_context)
return new_group
def add(self, context: ContextOptions):
# add to end of list, then sort
self.contexts.append(context)
self.contexts = get_sorted_list_via_attr(self.contexts, "start_percent")
self._set_first_as_current()
def add_to_start(self, context: ContextOptions):
# add to start of list, then sort
self.contexts.insert(0, context)
self.contexts = get_sorted_list_via_attr(self.contexts, "start_percent")
self._set_first_as_current()
def has_index(self, index: int) -> int:
return index >=0 and index < len(self.contexts)
def is_empty(self) -> bool:
return len(self.contexts) == 0
def clone(self):
cloned = ContextOptionsGroup()
for context in self.contexts:
cloned.contexts.append(context)
cloned._set_first_as_current()
return cloned
def initialize_timesteps(self, model: BaseModel):
for context in self.contexts:
context.start_t = model.model_sampling.percent_to_sigma(context.start_percent)
def prepare_current_context(self, t: Tensor):
curr_t: float = t[0]
prev_index = self._current_index
# if met guaranteed steps, look for next context in case need to switch
if self._current_used_steps >= self._current_context.guarantee_steps:
# if has next index, loop through and see if need to switch
if self.has_index(self._current_index+1):
for i in range(self._current_index+1, len(self.contexts)):
eval_c = self.contexts[i]
# check if start_t is greater or equal to curr_t
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
if eval_c.start_t >= curr_t:
self._current_index = i
self._current_context = eval_c
self._current_used_steps = 0
# if guarantee_steps greater than zero, stop searching for other keyframes
if self._current_context.guarantee_steps > 0:
break
# if eval_c is outside the percent range, stop looking further
else:
break
# update steps current context is used
self._current_used_steps += 1
def _set_first_as_current(self):
if len(self.contexts) > 0:
self._current_context = self.contexts[0]
# properties shadow those of ContextOptions
@property
def context_length(self):
return self._current_context.context_length
@property
def context_overlap(self):
return self._current_context.context_overlap
@property
def context_stride(self):
return self._current_context.context_stride
@property
def context_schedule(self):
return self._current_context.context_schedule
@property
def closed_loop(self):
return self._current_context.closed_loop
@property
def fuse_method(self):
return self._current_context.fuse_method
@property
def use_on_equal_length(self):
return self._current_context.use_on_equal_length
@property
def view_options(self):
return self._current_context.view_options
class ContextSchedules:
UNIFORM_LOOPED = "looped_uniform"
UNIFORM_STANDARD = "standard_uniform"
STATIC_STANDARD = "standard_static"
BATCHED = "batched"
VIEW_AS_CONTEXT = "view_as_context"
LEGACY_UNIFORM_LOOPED = "uniform"
LEGACY_UNIFORM_SCHEDULE_LIST = [LEGACY_UNIFORM_LOOPED]
# from https://github.com/neggles/animatediff-cli/blob/main/src/animatediff/pipelines/context.py
def create_windows_uniform_looped(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
windows = []
if num_frames < opts.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(opts.context_stride, int(np.ceil(np.log2(num_frames / opts.context_length))) + 1)
# obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(opts.step)))
for j in range(
int(ordered_halving(opts.step) * context_step) + pad,
num_frames + pad + (0 if opts.closed_loop else -opts.context_overlap),
(opts.context_length * context_step - opts.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + opts.context_length * context_step, context_step)])
return windows
def create_windows_uniform_standard(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
# unlike looped, uniform_straight does NOT allow windows that loop back to the beginning;
# instead, they get shifted to the corresponding end of the frames.
# in the case that a window (shifted or not) is identical to the previous one, it gets skipped.
windows = []
if num_frames <= opts.context_length:
windows.append(list(range(num_frames)))
return windows
context_stride = min(opts.context_stride, int(np.ceil(np.log2(num_frames / opts.context_length))) + 1)
# first, obtain uniform windows as normal, looping and all
for context_step in 1 << np.arange(context_stride):
pad = int(round(num_frames * ordered_halving(opts.step)))
for j in range(
int(ordered_halving(opts.step) * context_step) + pad,
num_frames + pad + (-opts.context_overlap),
(opts.context_length * context_step - opts.context_overlap),
):
windows.append([e % num_frames for e in range(j, j + opts.context_length * context_step, context_step)])
# now that windows are created, shift any windows that loop, and delete duplicate windows
delete_idxs = []
win_i = 0
while win_i < len(windows):
# if window is rolls over itself, need to shift it
is_roll, roll_idx = does_window_roll_over(windows[win_i], num_frames)
if is_roll:
roll_val = windows[win_i][roll_idx] # roll_val might not be 0 for windows of higher strides
shift_window_to_end(windows[win_i], num_frames=num_frames)
# check if next window (cyclical) is missing roll_val
if roll_val not in windows[(win_i+1) % len(windows)]:
# need to insert new window here - just insert window starting at roll_val
windows.insert(win_i+1, list(range(roll_val, roll_val + opts.context_length)))
# delete window if it's not unique
for pre_i in range(0, win_i):
if windows[win_i] == windows[pre_i]:
delete_idxs.append(win_i)
break
win_i += 1
# reverse delete_idxs so that they will be deleted in an order that doesn't break idx correlation
delete_idxs.reverse()
for i in delete_idxs:
windows.pop(i)
return windows
def create_windows_static_standard(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
windows = []
if num_frames <= opts.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows
delta = opts.context_length - opts.context_overlap
for start_idx in range(0, num_frames, delta):
# if past the end of frames, move start_idx back to allow same context_length
ending = start_idx + opts.context_length
if ending >= num_frames:
final_delta = ending - num_frames
final_start_idx = start_idx - final_delta
windows.append(list(range(final_start_idx, final_start_idx + opts.context_length)))
break
windows.append(list(range(start_idx, start_idx + opts.context_length)))
return windows
def create_windows_batched(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
windows = []
if num_frames <= opts.context_length:
windows.append(list(range(num_frames)))
return windows
# always return the same set of windows;
# no overlap, just cut up based on context_length;
# last window size will be different if num_frames % opts.context_length != 0
for start_idx in range(0, num_frames, opts.context_length):
windows.append(list(range(start_idx, min(start_idx + opts.context_length, num_frames))))
return windows
def create_windows_default(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
return [list(range(num_frames))]
def get_context_windows(num_frames: int, opts: Union[ContextOptionsGroup, ContextOptions]):
context_func = CONTEXT_MAPPING.get(opts.context_schedule, None)
if not context_func:
raise ValueError(f"Unknown context_schedule '{opts.context_schedule}'.")
return context_func(num_frames, opts)
CONTEXT_MAPPING = {
ContextSchedules.UNIFORM_LOOPED: create_windows_uniform_looped,
ContextSchedules.UNIFORM_STANDARD: create_windows_uniform_standard,
ContextSchedules.STATIC_STANDARD: create_windows_static_standard,
ContextSchedules.BATCHED: create_windows_batched,
ContextSchedules.VIEW_AS_CONTEXT: create_windows_default, # just return all to allow Views to do all the work
}
def get_context_weights(num_frames: int, fuse_method: str):
weights_func = FUSE_MAPPING.get(fuse_method, None)
if not weights_func:
raise ValueError(f"Unknown fuse_method '{fuse_method}'.")
return weights_func(num_frames)
def create_weights_flat(length: int, **kwargs) -> list[float]:
# weight is the same for all
return [1.0] * length
def create_weights_pyramid(length: int, **kwargs) -> list[float]:
# weight is based on the distance away from the edge of the context window;
# based on weighted average concept in FreeNoise paper
if length % 2 == 0:
max_weight = length // 2
weight_sequence = list(range(1, max_weight + 1, 1)) + list(range(max_weight, 0, -1))
else:
max_weight = (length + 1) // 2
weight_sequence = list(range(1, max_weight, 1)) + [max_weight] + list(range(max_weight - 1, 0, -1))
return weight_sequence
FUSE_MAPPING = {
ContextFuseMethod.FLAT: create_weights_flat,
ContextFuseMethod.PYRAMID: create_weights_pyramid,
ContextFuseMethod.RELATIVE: create_weights_pyramid,
}
# Returns fraction that has denominator that is a power of 2
def ordered_halving(val):
# get binary value, padded with 0s for 64 bits
bin_str = f"{val:064b}"
# flip binary value, padding included
bin_flip = bin_str[::-1]
# convert binary to int
as_int = int(bin_flip, 2)
# divide by 1 << 64, equivalent to 2**64, or 18446744073709551616,
# or b10000000000000000000000000000000000000000000000000000000000000000 (1 with 64 zero's)
return as_int / (1 << 64)
def get_missing_indexes(windows: list[list[int]], num_frames: int) -> list[int]:
all_indexes = list(range(num_frames))
for w in windows:
for val in w:
try:
all_indexes.remove(val)
except ValueError:
pass
return all_indexes
def does_window_roll_over(window: list[int], num_frames: int) -> tuple[bool, int]:
prev_val = -1
for i, val in enumerate(window):
val = val % num_frames
if val < prev_val:
return True, i
prev_val = val
return False, -1
def shift_window_to_start(window: list[int], num_frames: int):
start_val = window[0]
for i in range(len(window)):
# 1) subtract each element by start_val to move vals relative to the start of all frames
# 2) add num_frames and take modulus to get adjusted vals
window[i] = ((window[i] - start_val) + num_frames) % num_frames
def shift_window_to_end(window: list[int], num_frames: int):
# 1) shift window to start
shift_window_to_start(window, num_frames)
end_val = window[-1]
end_delta = num_frames - end_val - 1
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta
|