File size: 6,788 Bytes
71dd4c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aae5063
 
 
 
71dd4c8
 
aae5063
 
 
 
 
 
 
 
 
 
 
 
71dd4c8
 
 
 
 
 
 
 
aae5063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71dd4c8
aae5063
71dd4c8
aae5063
 
71dd4c8
aae5063
 
 
 
 
 
 
 
 
 
 
 
 
71dd4c8
 
 
 
 
 
d67cdc6
 
445a2ed
71dd4c8
 
 
 
 
 
 
 
 
 
 
 
a7359a8
 
 
 
 
 
 
 
71dd4c8
a1e2d65
71dd4c8
 
 
df96f45
71dd4c8
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import streamlit as st
import pandas as pd
from eventbrite_scrapper import Eventbrite
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
from datetime import datetime
from dataclasses import dataclass, field, replace
from typing import List, Any

# Dataclasses for event structure
@dataclass(frozen=True)
class EventAddress:
    latitude: float = None
    longitude: float = None
    region: str = None
    postal_code: str = None
    address_1: str = None

@dataclass(frozen=True)
class EventVenue:
    id: str = None
    name: str = None
    url: str = None
    address: EventAddress = field(default_factory=lambda: EventAddress())

@dataclass(frozen=True)
class EventImage:
    url: str = None

@dataclass(frozen=True)
class EventTag:
    text: str = None

@dataclass(frozen=True)
class Event:
    id: str = None
    name: str = None
    url: str = None
    is_online_event: bool = False
    short_description: str = None
    published_datetime: datetime = None
    start_datetime: datetime = None
    end_datetime: datetime = None
    timezone: str = None
    hide_start_date: bool = False
    hide_end_date: bool = False
    parent_event_url: str = None
    series_id: str = None
    primary_venue: EventVenue = field(default_factory=lambda: EventVenue())
    tickets_url: str = None
    checkout_flow: str = None
    language: str = None
    image: EventImage = field(default_factory=lambda: EventImage())
    tags_categories: tuple = field(default_factory=tuple)
    tags_formats: tuple = field(default_factory=tuple)
    tags_by_organizer: tuple = field(default_factory=tuple)

    def __hash__(self):
        return hash(self.id) if self.id else hash((self.name, self.is_online_event, self.start_datetime, self.primary_venue.name))

# Event Retrieval Pipeline
class EventbriteRAGPipeline:
    def __init__(self, events: List[Event], embedding_model: str = 'all-MiniLM-L6-v2'):
        self.events = [
            replace(
                event,
                tags_categories=tuple(event.tags_categories),
                tags_formats=tuple(event.tags_formats),
                tags_by_organizer=tuple(event.tags_by_organizer),
            )
            for event in events
        ]
        self.model = SentenceTransformer(embedding_model)
        self.event_embeddings = self._compute_embeddings()

    def _compute_embeddings(self) -> List[np.ndarray]:
        def event_to_text(event: Event) -> str:
            text_parts = [
                event.name or '',
                event.short_description or '',
                ' '.join(tag.text for tag in event.tags_categories),
                ' '.join(tag.text for tag in event.tags_formats),
                ' '.join(tag.text for tag in event.tags_by_organizer),
                event.primary_venue.name or '',
                event.primary_venue.address.region or '',
                event.language or ''
            ]
            return ' '.join(filter(bool, text_parts))

        return self.model.encode([event_to_text(event) for event in self.events])

    def query_events(self, query: str, top_k: int = 5) -> List[Event]:
        # query_embedding = self.model.encode(query).reshape(1, -1)
        # similarities = cosine_similarity(query_embedding, self.event_embeddings)[0]
        # top_indices = similarities.argsort()[-top_k:][::-1]
        # return [self.events[idx] for idx in top_indices]
        query_embedding = self.model.encode(query).reshape(1, -1)
        similarities = cosine_similarity(query_embedding, self.event_embeddings)[0]

        top_indices = similarities.argsort()[-(top_k * 2):][::-1]  # Get extra events to filter duplicates

        unique_events = {}
        for idx in top_indices:
            event = self.events[idx]
            if event.id not in unique_events:
                unique_events[event.id] = event
            if len(unique_events) == top_k:
                break

        return list(unique_events.values())

# Event Evaluator
class EventEvaluator:
    def __init__(self, pipeline):
        self.pipeline = pipeline

    def evaluate_query(self, query):
        """Evaluate a single query and return results."""
        # top_events = self.pipeline.query_events(query)
        # results = []
        # for event in top_events:
        #     result = {
        #         "Event Name": event.name,
        #         "Online Event": event.is_online_event,
        #         "Start Time": event.start_datetime,
        #         "Venue Address": event.primary_venue.address.address_1,
        #         "Venue Name": event.primary_venue.name,
        #         "Description": event.short_description,
        #         "Tickets URL": event.tickets_url,
        #         "Language": event.language,
        #         "Categories": [tag.text for tag in event.tags_categories],
        #     }
        #     results.append(result)
        top_events = self.pipeline.query_events(query)
    
        results = []
        seen = set()
    
        for event in top_events:
            if event.id not in seen:  # Ensure unique events
                seen.add(event.id)
                results.append({
                    "Event Name": event.name,
                    "Online Event": event.is_online_event,
                    "Start Time": event.start_datetime,
                    "Venue Address": event.primary_venue.address.address_1,
                    "Venue Name": event.primary_venue.name,
                    "Description": event.short_description,
                    "Tickets URL": event.tickets_url,
                    "Language": event.language,
                    "Categories": [tag.text for tag in event.tags_categories],
                })
        return results

# Fetch events from Eventbrite API
client = Eventbrite()
events = client.search_events.get_results(
    region="ca--los-angeles",
    dt_start="2025-02-26",
    dt_end="2025-02-28",
    max_pages=6,
)

# Initialize pipeline and evaluator
rag_pipeline = EventbriteRAGPipeline(events)
evaluator = EventEvaluator(rag_pipeline)

# Streamlit UI
st.title("🎟️ Event Search App")

st.write("Find events based on your interests!")

query = st.text_input("πŸ”Ž Enter your search query:")
# if query:
#     results = evaluator.evaluate_query(query)

#     if results:
#         df = pd.DataFrame(results)
#         st.dataframe(df)  # Display results as a formatted table
#     else:
#         st.warning("No results found.")
if query:
    print(f"πŸ” Processing query: {query} ")  # Debugging query input
    results = evaluator.evaluate_query(query)

    if results:
        df = pd.DataFrame(results)
        st.dataframe(df)  # Display results as a formatted table
    else:
        st.warning("No results found.")