File size: 5,053 Bytes
d5ee97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Decode trained FastSpeech from folders."""
import argparse
import logging
import os
import sys
sys.path.append(".")
import numpy as np
import tensorflow as tf
import yaml
from tqdm import tqdm
from examples.fastspeech2.fastspeech2_dataset import CharactorDurationF0EnergyMelDataset
from tensorflow_tts.configs import FastSpeech2Config
from tensorflow_tts.models import TFFastSpeech2
def main():
"""Run fastspeech2 decoding from folder."""
parser = argparse.ArgumentParser(
description="Decode soft-mel features from charactor with trained FastSpeech "
"(See detail in examples/fastspeech2/decode_fastspeech2.py)."
)
parser.add_argument(
"--rootdir",
default=None,
type=str,
required=True,
help="directory including ids/durations files.",
)
parser.add_argument(
"--outdir", type=str, required=True, help="directory to save generated speech."
)
parser.add_argument(
"--checkpoint", type=str, required=True, help="checkpoint file to be loaded."
)
parser.add_argument(
"--config",
default=None,
type=str,
required=True,
help="yaml format configuration file. if not explicitly provided, "
"it will be searched in the checkpoint directory. (default=None)",
)
parser.add_argument(
"--batch-size",
default=8,
type=int,
required=False,
help="Batch size for inference.",
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# load config
outdpost = os.path.join(args.outdir, "postnets")
if not os.path.exists(outdpost):
os.makedirs(outdpost)
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
if config["format"] == "npy":
char_query = "*-ids.npy"
char_load_fn = np.load
else:
raise ValueError("Only npy is supported.")
# define data-loader
dataset = CharactorDurationF0EnergyMelDataset(
root_dir=args.rootdir,
charactor_query=char_query,
charactor_load_fn=char_load_fn,
)
dataset = dataset.create(
batch_size=1
) # force batch size to 1 otherwise it may miss certain files
# define model and load checkpoint
fastspeech2 = TFFastSpeech2(
config=FastSpeech2Config(**config["fastspeech2_params"]), name="fastspeech2"
)
fastspeech2._build()
fastspeech2.load_weights(args.checkpoint)
fastspeech2 = tf.function(fastspeech2, experimental_relax_shapes=True)
for data in tqdm(dataset, desc="Decoding"):
utt_ids = data["utt_ids"]
char_ids = data["input_ids"]
mel_lens = data["mel_lengths"]
# fastspeech inference.
masked_mel_before, masked_mel_after, duration_outputs, _, _ = fastspeech2(
**data, training=True
)
# convert to numpy
masked_mel_befores = masked_mel_before.numpy()
masked_mel_afters = masked_mel_after.numpy()
for (utt_id, mel_before, mel_after, durations, mel_len) in zip(
utt_ids, masked_mel_befores, masked_mel_afters, duration_outputs, mel_lens
):
# real len of mel predicted
real_length = np.around(durations.numpy().sum()).astype(int)
utt_id = utt_id.numpy().decode("utf-8")
np.save(
os.path.join(outdpost, f"{utt_id}-postnet.npy"),
mel_after[:mel_len, :].astype(np.float32),
allow_pickle=False,
)
if __name__ == "__main__":
main()
|