File size: 8,291 Bytes
d5ee97c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
# -*- coding: utf-8 -*-
# Copyright 2020 Minh Nguyen (@dathudeptrai)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Extract durations based-on tacotron-2 alignments for FastSpeech."""
import argparse
import logging
import os
from numba import jit
import sys
sys.path.append(".")
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import yaml
from tqdm import tqdm
from examples.tacotron2.tacotron_dataset import CharactorMelDataset
from tensorflow_tts.configs import Tacotron2Config
from tensorflow_tts.models import TFTacotron2
@jit(nopython=True)
def get_duration_from_alignment(alignment):
D = np.array([0 for _ in range(np.shape(alignment)[0])])
for i in range(np.shape(alignment)[1]):
max_index = list(alignment[:, i]).index(alignment[:, i].max())
D[max_index] = D[max_index] + 1
return D
def main():
"""Running extract tacotron-2 durations."""
parser = argparse.ArgumentParser(
description="Extract durations from charactor with trained Tacotron-2 "
"(See detail in tensorflow_tts/example/tacotron-2/extract_duration.py)."
)
parser.add_argument(
"--rootdir",
default=None,
type=str,
required=True,
help="directory including ids/durations files.",
)
parser.add_argument(
"--outdir", type=str, required=True, help="directory to save generated speech."
)
parser.add_argument(
"--checkpoint", type=str, required=True, help="checkpoint file to be loaded."
)
parser.add_argument(
"--use-norm", default=1, type=int, help="usr norm-mels for train or raw."
)
parser.add_argument("--batch-size", default=8, type=int, help="batch size.")
parser.add_argument("--win-front", default=2, type=int, help="win-front.")
parser.add_argument("--win-back", default=2, type=int, help="win-front.")
parser.add_argument(
"--use-window-mask", default=1, type=int, help="toggle window masking."
)
parser.add_argument("--save-alignment", default=0, type=int, help="save-alignment.")
parser.add_argument(
"--config",
default=None,
type=str,
required=True,
help="yaml format configuration file. if not explicitly provided, "
"it will be searched in the checkpoint directory. (default=None)",
)
parser.add_argument(
"--verbose",
type=int,
default=1,
help="logging level. higher is more logging. (default=1)",
)
args = parser.parse_args()
# set logger
if args.verbose > 1:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose > 0:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
# check directory existence
if not os.path.exists(args.outdir):
os.makedirs(args.outdir)
# load config
with open(args.config) as f:
config = yaml.load(f, Loader=yaml.Loader)
config.update(vars(args))
if config["format"] == "npy":
char_query = "*-ids.npy"
mel_query = "*-raw-feats.npy" if args.use_norm is False else "*-norm-feats.npy"
char_load_fn = np.load
mel_load_fn = np.load
else:
raise ValueError("Only npy is supported.")
# define data-loader
dataset = CharactorMelDataset(
dataset=config["tacotron2_params"]["dataset"],
root_dir=args.rootdir,
charactor_query=char_query,
mel_query=mel_query,
charactor_load_fn=char_load_fn,
mel_load_fn=mel_load_fn,
reduction_factor=config["tacotron2_params"]["reduction_factor"],
use_fixed_shapes=True,
)
dataset = dataset.create(allow_cache=True, batch_size=args.batch_size, drop_remainder=False)
# define model and load checkpoint
tacotron2 = TFTacotron2(
config=Tacotron2Config(**config["tacotron2_params"]),
name="tacotron2",
)
tacotron2._build() # build model to be able load_weights.
tacotron2.load_weights(args.checkpoint)
# apply tf.function for tacotron2.
tacotron2 = tf.function(tacotron2, experimental_relax_shapes=True)
for data in tqdm(dataset, desc="[Extract Duration]"):
utt_ids = data["utt_ids"]
input_lengths = data["input_lengths"]
mel_lengths = data["mel_lengths"]
utt_ids = utt_ids.numpy()
real_mel_lengths = data["real_mel_lengths"]
del data["real_mel_lengths"]
# tacotron2 inference.
mel_outputs, post_mel_outputs, stop_outputs, alignment_historys = tacotron2(
**data,
use_window_mask=args.use_window_mask,
win_front=args.win_front,
win_back=args.win_back,
training=True,
)
# convert to numpy
alignment_historys = alignment_historys.numpy()
for i, alignment in enumerate(alignment_historys):
real_char_length = input_lengths[i].numpy()
real_mel_length = real_mel_lengths[i].numpy()
alignment_mel_length = int(
np.ceil(
real_mel_length / config["tacotron2_params"]["reduction_factor"]
)
)
alignment = alignment[:real_char_length, :alignment_mel_length]
d = get_duration_from_alignment(alignment) # [max_char_len]
d = d * config["tacotron2_params"]["reduction_factor"]
assert (
np.sum(d) >= real_mel_length
), f"{d}, {np.sum(d)}, {alignment_mel_length}, {real_mel_length}"
if np.sum(d) > real_mel_length:
rest = np.sum(d) - real_mel_length
# print(d, np.sum(d), real_mel_length)
if d[-1] > rest:
d[-1] -= rest
elif d[0] > rest:
d[0] -= rest
else:
d[-1] -= rest // 2
d[0] -= rest - rest // 2
assert d[-1] >= 0 and d[0] >= 0, f"{d}, {np.sum(d)}, {real_mel_length}"
saved_name = utt_ids[i].decode("utf-8")
# check a length compatible
assert (
len(d) == real_char_length
), f"different between len_char and len_durations, {len(d)} and {real_char_length}"
assert (
np.sum(d) == real_mel_length
), f"different between sum_durations and len_mel, {np.sum(d)} and {real_mel_length}"
# save D to folder.
np.save(
os.path.join(args.outdir, f"{saved_name}-durations.npy"),
d.astype(np.int32),
allow_pickle=False,
)
# save alignment to debug.
if args.save_alignment == 1:
figname = os.path.join(args.outdir, f"{saved_name}_alignment.png")
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
ax.set_title(f"Alignment of {saved_name}")
im = ax.imshow(
alignment, aspect="auto", origin="lower", interpolation="none"
)
fig.colorbar(im, ax=ax)
xlabel = "Decoder timestep"
plt.xlabel(xlabel)
plt.ylabel("Encoder timestep")
plt.tight_layout()
plt.savefig(figname)
plt.close()
if __name__ == "__main__":
main()
|