File size: 15,394 Bytes
a080fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import signal
import subprocess
import unittest

import psutil
import pytest
from transformers import AutoModelForCausalLM
from transformers.testing_utils import require_torch_multi_accelerator, torch_device

from trl.extras.vllm_client import VLLMClient
from trl.scripts.vllm_serve import chunk_list

from .testing_utils import require_3_accelerators


class TestChunkList(unittest.TestCase):
    def test_even_split(self):
        self.assertEqual(chunk_list([1, 2, 3, 4, 5, 6], 2), [[1, 2, 3], [4, 5, 6]])

    def test_uneven_split(self):
        self.assertEqual(chunk_list([1, 2, 3, 4, 5, 6], 4), [[1, 2], [3, 4], [5], [6]])

    def test_more_chunks_than_elements(self):
        self.assertEqual(chunk_list([1, 2, 3, 4, 5, 6], 8), [[1], [2], [3], [4], [5], [6], [], []])

    def test_n_equals_len(self):
        self.assertEqual(chunk_list([1, 2, 3], 3), [[1], [2], [3]])

    def test_n_is_1(self):
        self.assertEqual(chunk_list([1, 2, 3], 1), [[1, 2, 3]])

    def test_single_element_list(self):
        self.assertEqual(chunk_list([42], 2), [[42], []])

    def test_any_dtype(self):
        self.assertEqual(
            chunk_list([1, "two", 3.0, {"four": 4}, ["f", "i", "v", "e"]], 2),
            [[1, "two", 3.0], [{"four": 4}, ["f", "i", "v", "e"]]],
        )


@pytest.mark.slow
@require_torch_multi_accelerator
class TestVLLMClientServer(unittest.TestCase):
    model_id = "Qwen/Qwen2.5-1.5B"

    @classmethod
    def setUpClass(cls):
        # We want the server to run on accelerator 1, so we set VISIBLE_DEVICES to "1"
        env = os.environ.copy()
        VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
        env[VISIBLE_DEVICES] = "1"  # Restrict to accelerator 1

        # Start the server process
        cls.server_process = subprocess.Popen(
            ["trl", "vllm-serve", "--model", cls.model_id], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env
        )

        # Initialize the client
        cls.client = VLLMClient(connection_timeout=240)
        cls.client.init_communicator()

    def test_generate(self):
        prompts = ["Hello, AI!", "Tell me a joke"]
        outputs = self.client.generate(prompts)

        # Check that the output is a list
        self.assertIsInstance(outputs, list)

        # Check that the number of generated sequences is equal to the number of prompts
        self.assertEqual(len(outputs), len(prompts))

        # Check that the generated sequences are lists of integers
        for seq in outputs:
            self.assertTrue(all(isinstance(tok, int) for tok in seq))

    def test_generate_with_params(self):
        prompts = ["Hello, AI!", "Tell me a joke"]
        outputs = self.client.generate(prompts, n=2, repetition_penalty=0.9, temperature=0.8, max_tokens=32)

        # Check that the output is a list
        self.assertIsInstance(outputs, list)

        # Check that the number of generated sequences is 2 times the number of prompts
        self.assertEqual(len(outputs), 2 * len(prompts))

        # Check that the generated sequences are lists of integers
        for seq in outputs:
            self.assertTrue(all(isinstance(tok, int) for tok in seq))

        # Check that the length of the generated sequences is less than or equal to 32
        for seq in outputs:
            self.assertLessEqual(len(seq), 32)

    def test_update_model_params(self):
        model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
        self.client.update_model_params(model)

    def test_reset_prefix_cache(self):
        # Test resetting the prefix cache
        self.client.reset_prefix_cache()

    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()

        # Close the client
        cls.client.close_communicator()

        # vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
        # kill the server process and its children explicitly.
        parent = psutil.Process(cls.server_process.pid)
        children = parent.children(recursive=True)
        for child in children:
            child.send_signal(signal.SIGTERM)
        cls.server_process.terminate()
        cls.server_process.wait()


# Same as above but using base_url to instantiate the client.
@pytest.mark.slow
@require_torch_multi_accelerator
class TestVLLMClientServerBaseURL(unittest.TestCase):
    model_id = "Qwen/Qwen2.5-1.5B"

    @classmethod
    def setUpClass(cls):
        # We want the server to run on accelerator 1, so we set VISIBLE_DEVICES to "1"
        env = os.environ.copy()
        VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
        env[VISIBLE_DEVICES] = "1"  # Restrict to accelerator 1

        # Start the server process
        cls.server_process = subprocess.Popen(
            ["trl", "vllm-serve", "--model", cls.model_id], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env
        )

        # Initialize the client
        cls.client = VLLMClient(base_url="http://localhost:8000", connection_timeout=240)
        cls.client.init_communicator()

    def test_generate(self):
        prompts = ["Hello, AI!", "Tell me a joke"]
        outputs = self.client.generate(prompts)

        # Check that the output is a list
        self.assertIsInstance(outputs, list)

        # Check that the number of generated sequences is equal to the number of prompts
        self.assertEqual(len(outputs), len(prompts))

        # Check that the generated sequences are lists of integers
        for seq in outputs:
            self.assertTrue(all(isinstance(tok, int) for tok in seq))

    def test_generate_with_params(self):
        prompts = ["Hello, AI!", "Tell me a joke"]
        outputs = self.client.generate(prompts, n=2, repetition_penalty=0.9, temperature=0.8, max_tokens=32)

        # Check that the output is a list
        self.assertIsInstance(outputs, list)

        # Check that the number of generated sequences is 2 times the number of prompts
        self.assertEqual(len(outputs), 2 * len(prompts))

        # Check that the generated sequences are lists of integers
        for seq in outputs:
            self.assertTrue(all(isinstance(tok, int) for tok in seq))

        # Check that the length of the generated sequences is less than or equal to 32
        for seq in outputs:
            self.assertLessEqual(len(seq), 32)

    def test_update_model_params(self):
        model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
        self.client.update_model_params(model)

    def test_reset_prefix_cache(self):
        # Test resetting the prefix cache
        self.client.reset_prefix_cache()

    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()

        # Close the client
        cls.client.close_communicator()

        # vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
        # kill the server process and its children explicitly.
        parent = psutil.Process(cls.server_process.pid)
        children = parent.children(recursive=True)
        for child in children:
            child.send_signal(signal.SIGTERM)
        cls.server_process.terminate()
        cls.server_process.wait()


@pytest.mark.slow
@require_3_accelerators
class TestVLLMClientServerTP(unittest.TestCase):
    model_id = "Qwen/Qwen2.5-1.5B"

    @classmethod
    def setUpClass(cls):
        # We want the server to run on accelerator 1 and 2, so we set VISIBLE_DEVICES to "1,2"
        env = os.environ.copy()
        VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
        env[VISIBLE_DEVICES] = "1,2"  # Restrict to accelerator 1 and 2

        # Start the server process
        cls.server_process = subprocess.Popen(
            ["trl", "vllm-serve", "--model", cls.model_id, "--tensor_parallel_size", "2"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env,
        )

        # Initialize the client
        cls.client = VLLMClient(connection_timeout=240)
        cls.client.init_communicator()

    def test_generate(self):
        prompts = ["Hello, AI!", "Tell me a joke"]
        outputs = self.client.generate(prompts)

        # Check that the output is a list
        self.assertIsInstance(outputs, list)

        # Check that the number of generated sequences is equal to the number of prompts
        self.assertEqual(len(outputs), len(prompts))

        # Check that the generated sequences are lists of integers
        for seq in outputs:
            self.assertTrue(all(isinstance(tok, int) for tok in seq))

    def test_update_model_params(self):
        model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
        self.client.update_model_params(model)

    def test_reset_prefix_cache(self):
        # Test resetting the prefix cache
        self.client.reset_prefix_cache()

    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()

        # Close the client
        cls.client.close_communicator()

        # vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
        # kill the server process and its children explicitly.
        parent = psutil.Process(cls.server_process.pid)
        children = parent.children(recursive=True)
        for child in children:
            child.send_signal(signal.SIGTERM)
        cls.server_process.terminate()
        cls.server_process.wait()


@pytest.mark.slow
@require_3_accelerators
class TestVLLMClientServerDP(unittest.TestCase):
    model_id = "Qwen/Qwen2.5-1.5B"

    @classmethod
    def setUpClass(cls):
        # We want the server to run on accelerator 1 and 2, so we set VISIBLE_DEVICES to "1,2"
        env = os.environ.copy()
        VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
        env[VISIBLE_DEVICES] = "1,2"  # Restrict to accelerator 1 and 2

        # Start the server process
        cls.server_process = subprocess.Popen(
            ["trl", "vllm-serve", "--model", cls.model_id, "--data_parallel_size", "2"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            env=env,
        )

        # Initialize the client
        cls.client = VLLMClient(connection_timeout=240)
        cls.client.init_communicator()

    def test_generate(self):
        prompts = ["Hello, AI!", "Tell me a joke"]
        outputs = self.client.generate(prompts)

        # Check that the output is a list
        self.assertIsInstance(outputs, list)

        # Check that the number of generated sequences is equal to the number of prompts
        self.assertEqual(len(outputs), len(prompts))

        # Check that the generated sequences are lists of integers
        for seq in outputs:
            self.assertTrue(all(isinstance(tok, int) for tok in seq))

    def test_update_model_params(self):
        model = AutoModelForCausalLM.from_pretrained(self.model_id, device_map=torch_device)
        self.client.update_model_params(model)

    def test_reset_prefix_cache(self):
        # Test resetting the prefix cache
        self.client.reset_prefix_cache()

    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()

        # Close the client
        cls.client.close_communicator()

        # vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
        # kill the server process and its children explicitly.
        parent = psutil.Process(cls.server_process.pid)
        children = parent.children(recursive=True)
        for child in children:
            child.send_signal(signal.SIGTERM)
        cls.server_process.terminate()
        cls.server_process.wait()


@pytest.mark.slow
@require_torch_multi_accelerator
class TestVLLMClientServerDeviceParameter(unittest.TestCase):
    """Test the device parameter functionality in init_communicator."""

    model_id = "Qwen/Qwen2.5-1.5B"

    @classmethod
    def setUpClass(cls):
        # We want the server to run on accelerator 1, so we set VISIBLE_DEVICES to "1"
        env = os.environ.copy()
        VISIBLE_DEVICES = "ZE_AFFINITY_MASK" if torch_device == "xpu" else "CUDA_VISIBLE_DEVICES"
        env[VISIBLE_DEVICES] = "1"  # Restrict to accelerator 1

        # Start the server process
        cls.server_process = subprocess.Popen(
            ["trl", "vllm-serve", "--model", cls.model_id], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env
        )

    def test_init_communicator_with_device_int(self):
        """Test init_communicator with integer device parameter."""
        client = VLLMClient(connection_timeout=240)
        client.init_communicator(device=0)  # Explicitly specify device 0

        # Test basic functionality
        prompts = ["Hello, AI!"]
        outputs = client.generate(prompts)
        self.assertIsInstance(outputs, list)
        self.assertEqual(len(outputs), len(prompts))

        client.close_communicator()

    def test_init_communicator_with_device_string(self):
        """Test init_communicator with string device parameter."""
        client = VLLMClient(connection_timeout=240)
        client.init_communicator(device="cuda:0")  # Explicitly specify device as string

        # Test basic functionality
        prompts = ["Hello, AI!"]
        outputs = client.generate(prompts)
        self.assertIsInstance(outputs, list)
        self.assertEqual(len(outputs), len(prompts))

        client.close_communicator()

    def test_init_communicator_with_torch_device(self):
        """Test init_communicator with torch.device object."""
        import torch

        client = VLLMClient(connection_timeout=240)
        device = torch.device("cuda:0")
        client.init_communicator(device=device)  # Explicitly specify torch.device object

        # Test basic functionality
        prompts = ["Hello, AI!"]
        outputs = client.generate(prompts)
        self.assertIsInstance(outputs, list)
        self.assertEqual(len(outputs), len(prompts))

        client.close_communicator()

    @classmethod
    def tearDownClass(cls):
        super().tearDownClass()

        # vLLM x pytest (or Popen) seems not to handle process termination well. To avoid zombie processes, we need to
        # kill the server process and its children explicitly.
        parent = psutil.Process(cls.server_process.pid)
        children = parent.children(recursive=True)
        for child in children:
            child.send_signal(signal.SIGTERM)
        cls.server_process.terminate()
        cls.server_process.wait()