File size: 4,488 Bytes
a080fe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# /// script
# dependencies = [
#     "trl @ git+https://github.com/huggingface/trl.git",
#     "peft",
# ]
# ///

"""
python examples/scripts/mpo_vlm.py \
    --dataset_name HuggingFaceH4/rlaif-v_formatted \
    --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
    --per_device_train_batch_size 4 \
    --per_device_eval_batch_size 4 \
    --num_train_epochs 1 \
    --gradient_accumulation_steps 8 \
    --dataset_num_proc 1 \
    --output_dir dpo_idefics_rlaif-v \
    --torch_dtype bfloat16 \
    --gradient_checkpointing \
    --use_peft \
    --lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj \
    --loss_type sigmoid bco_pair sft \
    --loss_weights 0.8 0.2 1.0 \
    --bf16 True
"""

import torch
from datasets import load_dataset
from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor

from trl import (
    DPOConfig,
    DPOTrainer,
    ModelConfig,
    ScriptArguments,
    TrlParser,
    get_kbit_device_map,
    get_peft_config,
    get_quantization_config,
)


if __name__ == "__main__":
    parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig))
    script_args, training_args, model_args = parser.parse_args_and_config()

    ################
    # Model & Processor
    ################
    torch_dtype = (
        model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
    )
    quantization_config = get_quantization_config(model_args)

    model_kwargs = dict(
        trust_remote_code=model_args.trust_remote_code,
        revision=model_args.model_revision,
        attn_implementation=model_args.attn_implementation,
        torch_dtype=torch_dtype,
        device_map=get_kbit_device_map() if quantization_config is not None else None,
        quantization_config=quantization_config,
    )
    model = AutoModelForVision2Seq.from_pretrained(
        model_args.model_name_or_path,
        **model_kwargs,
    )
    peft_config = get_peft_config(model_args)
    if peft_config is None:
        ref_model = AutoModelForVision2Seq.from_pretrained(
            model_args.model_name_or_path,
            **model_kwargs,
        )
    else:
        ref_model = None
    processor = AutoProcessor.from_pretrained(
        model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
    )

    ################
    # Dataset
    ################
    dataset = load_dataset(
        script_args.dataset_name,
        name=script_args.dataset_config,
        streaming=script_args.dataset_streaming,
    )
    train_dataset = dataset[script_args.dataset_train_split]
    test_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None

    def ensure_rgb(example):
        # Convert the image to RGB if it's not already
        image = example["images"][0]
        if isinstance(image, Image.Image):
            if image.mode != "RGB":
                image = image.convert("RGB")
            example["images"] = [image]
        return example

    # Apply the transformation to the dataset (change num_proc depending on the available compute)
    train_dataset = train_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc)
    if test_dataset is not None:
        test_dataset = test_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc)

    ################
    # Training
    ################
    trainer = DPOTrainer(
        model=model,
        ref_model=ref_model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=test_dataset,
        processing_class=processor,
        peft_config=peft_config,
    )

    trainer.train()

    # Save and push to hub
    trainer.save_model(training_args.output_dir)
    if training_args.push_to_hub:
        trainer.push_to_hub(dataset_name=script_args.dataset_name)