Spaces:
Paused
Paused
File size: 4,488 Bytes
a080fe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "trl @ git+https://github.com/huggingface/trl.git",
# "peft",
# ]
# ///
"""
python examples/scripts/mpo_vlm.py \
--dataset_name HuggingFaceH4/rlaif-v_formatted \
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 4 \
--num_train_epochs 1 \
--gradient_accumulation_steps 8 \
--dataset_num_proc 1 \
--output_dir dpo_idefics_rlaif-v \
--torch_dtype bfloat16 \
--gradient_checkpointing \
--use_peft \
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj \
--loss_type sigmoid bco_pair sft \
--loss_weights 0.8 0.2 1.0 \
--bf16 True
"""
import torch
from datasets import load_dataset
from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor
from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model & Processor
################
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
trust_remote_code=model_args.trust_remote_code,
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForVision2Seq.from_pretrained(
model_args.model_name_or_path,
**model_kwargs,
)
peft_config = get_peft_config(model_args)
if peft_config is None:
ref_model = AutoModelForVision2Seq.from_pretrained(
model_args.model_name_or_path,
**model_kwargs,
)
else:
ref_model = None
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
################
# Dataset
################
dataset = load_dataset(
script_args.dataset_name,
name=script_args.dataset_config,
streaming=script_args.dataset_streaming,
)
train_dataset = dataset[script_args.dataset_train_split]
test_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None
def ensure_rgb(example):
# Convert the image to RGB if it's not already
image = example["images"][0]
if isinstance(image, Image.Image):
if image.mode != "RGB":
image = image.convert("RGB")
example["images"] = [image]
return example
# Apply the transformation to the dataset (change num_proc depending on the available compute)
train_dataset = train_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc)
if test_dataset is not None:
test_dataset = test_dataset.map(ensure_rgb, num_proc=training_args.dataset_num_proc)
################
# Training
################
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=test_dataset,
processing_class=processor,
peft_config=peft_config,
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|