Spaces:
Running
on
A10G
Running
on
A10G
File size: 11,891 Bytes
a22eb82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import os
import cv2
import time
import glob
import argparse
import scipy
import numpy as np
from PIL import Image
from tqdm import tqdm
from itertools import cycle
from torch.multiprocessing import Pool, Process, set_start_method
"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
date: 2020.1.5
note: code is heavily borrowed from
https://github.com/NVlabs/ffhq-dataset
http://dlib.net/face_landmark_detection.py.html
requirements:
apt install cmake
conda install Pillow numpy scipy
pip install dlib
# download face landmark model from:
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""
import numpy as np
from PIL import Image
import dlib
class Croper:
def __init__(self, path_of_lm):
# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
self.predictor = dlib.shape_predictor(path_of_lm)
def get_landmark(self, img_np):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
detector = dlib.get_frontal_face_detector()
dets = detector(img_np, 1)
# print("Number of faces detected: {}".format(len(dets)))
# for k, d in enumerate(dets):
if len(dets) == 0:
return None
d = dets[0]
# Get the landmarks/parts for the face in box d.
shape = self.predictor(img_np, d)
# print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
# lm is a shape=(68,2) np.array
return lm
def align_face(self, img, lm, output_size=1024):
"""
:param filepath: str
:return: PIL Image
"""
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # 双眼差与双嘴差相加
x /= np.hypot(*x) # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) # 双眼差和眼嘴差,选较大的作为基准尺度
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点
qsize = np.hypot(*x) * 2 # 定义四边形的大小(边长),为基准尺度的2倍
# Shrink.
# 如果计算出的四边形太大了,就按比例缩小它
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
# img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0))
# if enable_padding and max(pad) > border - 4:
# pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
# img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
# h, w, _ = img.shape
# y, x, _ = np.ogrid[:h, :w, :1]
# mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
# 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
# blur = qsize * 0.02
# img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
# img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
# img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
# quad += pad[:2]
# Transform.
quad = (quad + 0.5).flatten()
lx = max(min(quad[0], quad[2]), 0)
ly = max(min(quad[1], quad[7]), 0)
rx = min(max(quad[4], quad[6]), img.size[0])
ry = min(max(quad[3], quad[5]), img.size[0])
# img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(),
# Image.BILINEAR)
# if output_size < transform_size:
# img = img.resize((output_size, output_size), Image.ANTIALIAS)
# Save aligned image.
return crop, [lx, ly, rx, ry]
# def crop(self, img_np_list):
# for _i in range(len(img_np_list)):
# img_np = img_np_list[_i]
# lm = self.get_landmark(img_np)
# if lm is None:
# return None
# crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=512)
# clx, cly, crx, cry = crop
# lx, ly, rx, ry = quad
# lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
# _inp = img_np_list[_i]
# _inp = _inp[cly:cry, clx:crx]
# _inp = _inp[ly:ry, lx:rx]
# img_np_list[_i] = _inp
# return img_np_list
def crop(self, img_np_list, xsize=512): # first frame for all video
img_np = img_np_list[0]
lm = self.get_landmark(img_np)
if lm is None:
return None
crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize)
clx, cly, crx, cry = crop
lx, ly, rx, ry = quad
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
for _i in range(len(img_np_list)):
_inp = img_np_list[_i]
_inp = _inp[cly:cry, clx:crx]
# cv2.imwrite('test1.jpg', _inp)
_inp = _inp[ly:ry, lx:rx]
# cv2.imwrite('test2.jpg', _inp)
img_np_list[_i] = _inp
return img_np_list, crop, quad
def read_video(filename, uplimit=100):
frames = []
cap = cv2.VideoCapture(filename)
cnt = 0
while cap.isOpened():
ret, frame = cap.read()
if ret:
frame = cv2.resize(frame, (512, 512))
frames.append(frame)
else:
break
cnt += 1
if cnt >= uplimit:
break
cap.release()
assert len(frames) > 0, f'{filename}: video with no frames!'
return frames
def create_video(video_name, frames, fps=25, video_format='.mp4', resize_ratio=1):
# video_name = os.path.dirname(image_folder) + video_format
# img_list = glob.glob1(image_folder, 'frame*')
# img_list.sort()
# frame = cv2.imread(os.path.join(image_folder, img_list[0]))
# frame = cv2.resize(frame, (0, 0), fx=resize_ratio, fy=resize_ratio)
# height, width, layers = frames[0].shape
height, width, layers = 512, 512, 3
if video_format == '.mp4':
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
elif video_format == '.avi':
fourcc = cv2.VideoWriter_fourcc(*'XVID')
video = cv2.VideoWriter(video_name, fourcc, fps, (width, height))
for _frame in frames:
_frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR)
video.write(_frame)
def create_images(video_name, frames):
height, width, layers = 512, 512, 3
images_dir = video_name.split('.')[0]
os.makedirs(images_dir, exist_ok=True)
for i, _frame in enumerate(frames):
_frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR)
_frame_path = os.path.join(images_dir, str(i)+'.jpg')
cv2.imwrite(_frame_path, _frame)
def run(data):
filename, opt, device = data
os.environ['CUDA_VISIBLE_DEVICES'] = device
croper = Croper()
frames = read_video(filename, uplimit=opt.uplimit)
name = filename.split('/')[-1] # .split('.')[0]
name = os.path.join(opt.output_dir, name)
frames = croper.crop(frames)
if frames is None:
print(f'{name}: detect no face. should removed')
return
# create_video(name, frames)
create_images(name, frames)
def get_data_path(video_dir):
eg_video_files = ['/apdcephfs/share_1290939/quincheng/datasets/HDTF/backup_fps25/WDA_KatieHill_000.mp4']
# filenames = list()
# VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
# VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
# extensions = VIDEO_EXTENSIONS
# for ext in extensions:
# filenames = sorted(glob.glob(f'{opt.input_dir}/**/*.{ext}'))
# print('Total number of videos:', len(filenames))
return eg_video_files
def get_wra_data_path(video_dir):
if opt.option == 'video':
videos_path = sorted(glob.glob(f'{video_dir}/*.mp4'))
elif opt.option == 'image':
videos_path = sorted(glob.glob(f'{video_dir}/*/'))
else:
raise NotImplementedError
print('Example videos: ', videos_path[:2])
return videos_path
if __name__ == '__main__':
set_start_method('spawn')
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--input_dir', type=str, help='the folder of the input files')
parser.add_argument('--output_dir', type=str, help='the folder of the output files')
parser.add_argument('--device_ids', type=str, default='0,1')
parser.add_argument('--workers', type=int, default=8)
parser.add_argument('--uplimit', type=int, default=500)
parser.add_argument('--option', type=str, default='video')
root = '/apdcephfs/share_1290939/quincheng/datasets/HDTF'
cmd = f'--input_dir {root}/backup_fps25_first20s_sync/ ' \
f'--output_dir {root}/crop512_stylegan_firstframe_sync/ ' \
'--device_ids 0 ' \
'--workers 8 ' \
'--option video ' \
'--uplimit 500 '
opt = parser.parse_args(cmd.split())
# filenames = get_data_path(opt.input_dir)
filenames = get_wra_data_path(opt.input_dir)
os.makedirs(opt.output_dir, exist_ok=True)
print(f'Video numbers: {len(filenames)}')
pool = Pool(opt.workers)
args_list = cycle([opt])
device_ids = opt.device_ids.split(",")
device_ids = cycle(device_ids)
for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))):
None
|