File size: 11,891 Bytes
a22eb82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import cv2
import time
import glob
import argparse
import scipy
import numpy as np
from PIL import Image
from tqdm import tqdm
from itertools import cycle

from torch.multiprocessing import Pool, Process, set_start_method


"""
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
author: lzhbrian (https://lzhbrian.me)
date: 2020.1.5
note: code is heavily borrowed from 
    https://github.com/NVlabs/ffhq-dataset
    http://dlib.net/face_landmark_detection.py.html
requirements:
    apt install cmake
    conda install Pillow numpy scipy
    pip install dlib
    # download face landmark model from: 
    # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
"""

import numpy as np
from PIL import Image
import dlib


class Croper:
    def __init__(self, path_of_lm):
        # download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
        self.predictor = dlib.shape_predictor(path_of_lm)

    def get_landmark(self, img_np):
        """get landmark with dlib
        :return: np.array shape=(68, 2)
        """
        detector = dlib.get_frontal_face_detector()
        dets = detector(img_np, 1)
        #     print("Number of faces detected: {}".format(len(dets)))
        #     for k, d in enumerate(dets):
        if len(dets) == 0:
            return None
        d = dets[0]
        # Get the landmarks/parts for the face in box d.
        shape = self.predictor(img_np, d)
        #         print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
        t = list(shape.parts())
        a = []
        for tt in t:
            a.append([tt.x, tt.y])
        lm = np.array(a)
        # lm is a shape=(68,2) np.array
        return lm

    def align_face(self, img, lm, output_size=1024):
        """
        :param filepath: str
        :return: PIL Image
        """
        lm_chin = lm[0: 17]  # left-right
        lm_eyebrow_left = lm[17: 22]  # left-right
        lm_eyebrow_right = lm[22: 27]  # left-right
        lm_nose = lm[27: 31]  # top-down
        lm_nostrils = lm[31: 36]  # top-down
        lm_eye_left = lm[36: 42]  # left-clockwise
        lm_eye_right = lm[42: 48]  # left-clockwise
        lm_mouth_outer = lm[48: 60]  # left-clockwise
        lm_mouth_inner = lm[60: 68]  # left-clockwise

        # Calculate auxiliary vectors.
        eye_left = np.mean(lm_eye_left, axis=0)
        eye_right = np.mean(lm_eye_right, axis=0)
        eye_avg = (eye_left + eye_right) * 0.5
        eye_to_eye = eye_right - eye_left
        mouth_left = lm_mouth_outer[0]
        mouth_right = lm_mouth_outer[6]
        mouth_avg = (mouth_left + mouth_right) * 0.5
        eye_to_mouth = mouth_avg - eye_avg

        # Choose oriented crop rectangle.
        x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]  # 双眼差与双嘴差相加
        x /= np.hypot(*x)   # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化
        x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)    # 双眼差和眼嘴差,选较大的作为基准尺度
        y = np.flipud(x) * [-1, 1]
        c = eye_avg + eye_to_mouth * 0.1
        quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])   # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点
        qsize = np.hypot(*x) * 2    # 定义四边形的大小(边长),为基准尺度的2倍

        # Shrink.
        # 如果计算出的四边形太大了,就按比例缩小它
        shrink = int(np.floor(qsize / output_size * 0.5))
        if shrink > 1:
            rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
            img = img.resize(rsize, Image.ANTIALIAS)
            quad /= shrink
            qsize /= shrink

        # Crop.
        border = max(int(np.rint(qsize * 0.1)), 3)
        crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
                int(np.ceil(max(quad[:, 1]))))
        crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
                min(crop[3] + border, img.size[1]))
        if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
            # img = img.crop(crop)
            quad -= crop[0:2]

        # Pad.
        pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
               int(np.ceil(max(quad[:, 1]))))
        pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
               max(pad[3] - img.size[1] + border, 0))
        # if enable_padding and max(pad) > border - 4:
        #     pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        #     img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
        #     h, w, _ = img.shape
        #     y, x, _ = np.ogrid[:h, :w, :1]
        #     mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
        #                       1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
        #     blur = qsize * 0.02
        #     img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        #     img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
        #     img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
        #     quad += pad[:2]

        # Transform.
        quad = (quad + 0.5).flatten()
        lx = max(min(quad[0], quad[2]), 0)
        ly = max(min(quad[1], quad[7]), 0)
        rx = min(max(quad[4], quad[6]), img.size[0])
        ry = min(max(quad[3], quad[5]), img.size[0])
        # img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(),
        #                     Image.BILINEAR)
        # if output_size < transform_size:
        #     img = img.resize((output_size, output_size), Image.ANTIALIAS)

        # Save aligned image.
        return crop, [lx, ly, rx, ry]

    # def crop(self, img_np_list):
    #     for _i in range(len(img_np_list)):
    #         img_np = img_np_list[_i]
    #         lm = self.get_landmark(img_np)
    #         if lm is None:
    #             return None
    #         crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=512)
    #         clx, cly, crx, cry = crop
    #         lx, ly, rx, ry = quad
    #         lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
        
    #         _inp = img_np_list[_i]
    #         _inp = _inp[cly:cry, clx:crx]
    #         _inp = _inp[ly:ry, lx:rx]
    #         img_np_list[_i] = _inp
    #     return img_np_list
    
    def crop(self, img_np_list, xsize=512):    # first frame for all video
        img_np = img_np_list[0]
        lm = self.get_landmark(img_np)
        if lm is None:
            return None
        crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize)
        clx, cly, crx, cry = crop
        lx, ly, rx, ry = quad
        lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
        for _i in range(len(img_np_list)):
            _inp = img_np_list[_i]
            _inp = _inp[cly:cry, clx:crx]
            # cv2.imwrite('test1.jpg', _inp)
            _inp = _inp[ly:ry, lx:rx]
            # cv2.imwrite('test2.jpg', _inp)
            img_np_list[_i] = _inp
        return img_np_list, crop, quad


def read_video(filename, uplimit=100):
    frames = []
    cap = cv2.VideoCapture(filename)
    cnt = 0
    while cap.isOpened():
        ret, frame = cap.read()
        if ret:
            frame = cv2.resize(frame, (512, 512))
            frames.append(frame)
        else:
            break
        cnt += 1
        if cnt >= uplimit:
            break
    cap.release()
    assert len(frames) > 0, f'{filename}: video with no frames!'
    return frames


def create_video(video_name, frames, fps=25, video_format='.mp4', resize_ratio=1):
    # video_name = os.path.dirname(image_folder) + video_format
    # img_list = glob.glob1(image_folder, 'frame*')
    # img_list.sort()
    # frame = cv2.imread(os.path.join(image_folder, img_list[0]))
    # frame = cv2.resize(frame, (0, 0), fx=resize_ratio, fy=resize_ratio)
    # height, width, layers = frames[0].shape
    height, width, layers = 512, 512, 3
    if video_format == '.mp4':
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    elif video_format == '.avi':
        fourcc = cv2.VideoWriter_fourcc(*'XVID')
    video = cv2.VideoWriter(video_name, fourcc, fps, (width, height))
    for _frame in frames:
        _frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR)
        video.write(_frame)

def create_images(video_name, frames):
    height, width, layers = 512, 512, 3
    images_dir = video_name.split('.')[0]
    os.makedirs(images_dir, exist_ok=True)
    for i, _frame in enumerate(frames):
        _frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR)
        _frame_path = os.path.join(images_dir, str(i)+'.jpg')
        cv2.imwrite(_frame_path, _frame)

def run(data):
    filename, opt, device = data
    os.environ['CUDA_VISIBLE_DEVICES'] = device
    croper = Croper()

    frames = read_video(filename, uplimit=opt.uplimit)
    name = filename.split('/')[-1]  # .split('.')[0]
    name = os.path.join(opt.output_dir, name)

    frames = croper.crop(frames)
    if frames is None:
        print(f'{name}: detect no face. should removed')
        return
    # create_video(name, frames)
    create_images(name, frames)


def get_data_path(video_dir):
    eg_video_files = ['/apdcephfs/share_1290939/quincheng/datasets/HDTF/backup_fps25/WDA_KatieHill_000.mp4']
    # filenames = list()
    # VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
    # VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
    # extensions = VIDEO_EXTENSIONS
    # for ext in extensions:
    #     filenames = sorted(glob.glob(f'{opt.input_dir}/**/*.{ext}'))
    # print('Total number of videos:', len(filenames))
    return eg_video_files


def get_wra_data_path(video_dir):
    if opt.option == 'video':
        videos_path = sorted(glob.glob(f'{video_dir}/*.mp4'))
    elif opt.option == 'image':
        videos_path = sorted(glob.glob(f'{video_dir}/*/'))
    else:
        raise NotImplementedError
    print('Example videos: ', videos_path[:2])
    return videos_path


if __name__ == '__main__':
    set_start_method('spawn')
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    parser.add_argument('--input_dir', type=str, help='the folder of the input files')
    parser.add_argument('--output_dir', type=str, help='the folder of the output files')
    parser.add_argument('--device_ids', type=str, default='0,1')
    parser.add_argument('--workers', type=int, default=8)
    parser.add_argument('--uplimit', type=int, default=500)
    parser.add_argument('--option', type=str, default='video')

    root = '/apdcephfs/share_1290939/quincheng/datasets/HDTF'
    cmd = f'--input_dir {root}/backup_fps25_first20s_sync/ ' \
          f'--output_dir {root}/crop512_stylegan_firstframe_sync/ ' \
          '--device_ids 0 ' \
          '--workers 8 ' \
          '--option video ' \
          '--uplimit 500 '
    opt = parser.parse_args(cmd.split())
    # filenames = get_data_path(opt.input_dir)
    filenames = get_wra_data_path(opt.input_dir)
    os.makedirs(opt.output_dir, exist_ok=True)
    print(f'Video numbers: {len(filenames)}')
    pool = Pool(opt.workers)
    args_list = cycle([opt])
    device_ids = opt.device_ids.split(",")
    device_ids = cycle(device_ids)
    for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))):
        None