Spaces:
Running
Running
File size: 4,238 Bytes
be63200 1dc9fa7 79fbe78 1dc9fa7 be63200 5435ca6 be63200 5df5027 be63200 5435ca6 be63200 5df5027 be63200 f57788d be63200 5df5027 be63200 f57788d be63200 5df5027 be63200 5215b17 be63200 5215b17 be63200 5215b17 be63200 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import streamlit as st
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.chat_models import ChatOpenAI
from langchain_community.document_loaders import Docx2txtLoader, PyPDFLoader, TextLoader
from langchain_community.embeddings.openai import OpenAIEmbeddings
from langchain_community.vectorstores.chroma import Chroma
from apikey import llm_api_key
key = llm_api_key
def load_and_process_file(file_data):
"""
Load and process the uploaded file.
Returns a vector store containing the embedded chunks of the file.
"""
file_name = os.path.join("./", file_data.name)
with open(file_name, "wb") as f:
f.write(file_data.getvalue())
_, extension = os.path.splitext(file_name)
# Load the file using the appropriate loader
if extension == ".pdf":
loader = PyPDFLoader(file_name)
elif extension == ".docx":
loader = Docx2txtLoader(file_name)
elif extension == ".txt":
loader = TextLoader(file_name)
else:
st.write("This document format is not supported!")
return None
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
chunks = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(chunks, embeddings)
return vector_store
def initialize_chat_model(vector_store):
"""
Initialize the chat model with the given vector store.
Returns a ConversationalRetrievalChain instance.
"""
llm = ChatOpenAI(
model="gpt-3.5-turbo",
temperature=0,
openai_api_key=key,
)
retriever = vector_store.as_retriever()
return ConversationalRetrievalChain.from_llm(llm, retriever)
def main():
"""
The main function that runs the Streamlit app.
"""
st.set_page_config(page_title="InkChatGPT", page_icon="π")
st.title("π InkChatGPT")
st.write("Upload a document and ask questions related to its content.")
uploaded_file = st.file_uploader(
"Select a file", type=["pdf", "docx", "txt"], key="file_uploader"
)
if uploaded_file:
add_file = st.button(
"Process File",
on_click=clear_history,
key="process_button",
)
if uploaded_file and add_file:
with st.spinner("π Thinking..."):
vector_store = load_and_process_file(uploaded_file)
if vector_store:
crc = initialize_chat_model(vector_store)
st.session_state.crc = crc
st.success("File processed successfully!")
if "crc" in st.session_state:
st.markdown("## Ask a Question")
question = st.text_area(
"Enter your question",
height=93,
key="question_input",
)
submit_button = st.button("Submit", key="submit_button")
if submit_button and "crc" in st.session_state:
handle_question(question)
display_chat_history()
def handle_question(question):
"""
Handles the user's question by generating a response and updating the chat history.
"""
crc = st.session_state.crc
if "history" not in st.session_state:
st.session_state["history"] = []
with st.spinner("Generating response..."):
response = crc.run(
{
"question": question,
"chat_history": st.session_state["history"],
}
)
st.session_state["history"].append((question, response))
st.write(response)
def display_chat_history():
"""
Displays the chat history in the Streamlit app.
"""
if "history" in st.session_state:
st.markdown("## Chat History")
for q, a in st.session_state["history"]:
st.markdown(f"**Question:** {q}")
st.write(a)
st.write("---")
def clear_history():
"""
Clear the chat history stored in the session state.
"""
if "history" in st.session_state:
del st.session_state["history"]
if __name__ == "__main__":
main()
|