File size: 16,179 Bytes
486eff6
38c016b
486eff6
38c016b
 
 
486eff6
 
 
 
38c016b
 
 
 
 
 
 
486eff6
 
 
 
 
38c016b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486eff6
 
 
38c016b
486eff6
38c016b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486eff6
38c016b
486eff6
38c016b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486eff6
 
 
38c016b
 
486eff6
 
 
 
38c016b
486eff6
 
 
38c016b
 
486eff6
38c016b
 
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
38c016b
 
486eff6
 
38c016b
486eff6
 
38c016b
 
 
486eff6
 
 
38c016b
 
486eff6
 
 
 
38c016b
 
 
 
 
 
 
 
 
 
 
 
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38c016b
486eff6
38c016b
486eff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38c016b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486eff6
 
38c016b
 
486eff6
 
38c016b
 
 
486eff6
 
38c016b
 
486eff6
 
 
 
 
 
38c016b
 
 
 
 
 
 
 
 
 
 
486eff6
 
 
 
38c016b
 
486eff6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
# Python Backend with Thematic AI Word Generation

This is the Python implementation of the crossword generator backend, featuring AI-powered thematic word generation using WordFreq vocabulary and semantic embeddings.

## πŸš€ Features

- **Thematic Word Generation**: Uses sentence-transformers for semantic word discovery from WordFreq vocabulary
- **319K+ Word Database**: Comprehensive vocabulary from WordFreq with frequency data
- **10-Tier Difficulty System**: Smart word selection based on frequency tiers
- **Environment Variable Configuration**: Flexible cache and model configuration
- **FastAPI**: Modern, fast Python web framework
- **Same API**: Compatible with existing React frontend

## πŸ”„ Differences from JavaScript Backend

| Feature | JavaScript Backend | Python Backend |
|---------|-------------------|----------------|
| **Word Generation** | Static word lists | Thematic AI word generation from 319K vocabulary |
| **Vocabulary Size** | ~100 words per topic | Filtered from 319K WordFreq database |
| **AI Approach** | Basic filtering | Semantic similarity with frequency tiers |
| **Performance** | Fast but limited | Slower startup, richer word selection |
| **Dependencies** | Node.js + static files | Python + ML libraries |

## πŸ› οΈ Setup & Installation

### Prerequisites
- Python 3.11+ (3.11 recommended for Docker compatibility)
- pip (Python package manager)

### Basic Setup (Core Functionality)
```bash
# Clone and navigate to backend directory
cd crossword-app/backend-py

# Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install core dependencies
pip install -r requirements.txt

# Start the server
python app.py
```

### Full Development Setup (with AI features)
```bash
# Install development dependencies including AI/ML libraries
pip install -r requirements-dev.txt

# This includes:
# - All core dependencies
# - AI/ML libraries (torch, sentence-transformers, etc.)
# - Development tools (pytest, coverage, etc.)
```

### Requirements Files
- **`requirements.txt`**: Core dependencies for basic functionality
- **`requirements-dev.txt`**: Full development environment with AI features

> **Note**: The AI/ML dependencies are large (~2GB). For basic testing without AI features, use `requirements.txt` only.

> **Python Version**: Both local development and Docker use Python 3.11+ for optimal performance and latest package compatibility.

## πŸ“ Structure

```
backend-py/
β”œβ”€β”€ app.py                          # FastAPI application entry point
β”œβ”€β”€ requirements.txt                # Core Python dependencies
β”œβ”€β”€ requirements-dev.txt            # Full development dependencies
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ services/
β”‚   β”‚   β”œβ”€β”€ thematic_word_service.py    # Thematic AI word generation
β”‚   β”‚   β”œβ”€β”€ crossword_generator.py      # Puzzle generation logic
β”‚   β”‚   └── crossword_generator_wrapper.py  # Service wrapper
β”‚   └── routes/
β”‚       └── api.py                      # API endpoints (matches JS backend)
β”œβ”€β”€ test-unit/                      # Unit tests (pytest framework) - 5 files
β”‚   β”œβ”€β”€ test_crossword_generator.py
β”‚   β”œβ”€β”€ test_api_routes.py
β”‚   └── test_vector_search.py
β”œβ”€β”€ test-integration/               # Integration tests (standalone scripts) - 16 files
β”‚   β”œβ”€β”€ test_simple_generation.py
β”‚   β”œβ”€β”€ test_boundary_fix.py
β”‚   └── test_local.py               # (+ 13 more test files)
β”œβ”€β”€ data/ -> ../backend/data/       # Symlink to shared word data
└── public/                         # Frontend static files (copied during build)
```

## πŸ›  Dependencies

### Core ML Stack
- `sentence-transformers`: Local model loading and embeddings
- `wordfreq`: 319K word vocabulary with frequency data
- `torch`: PyTorch for model inference
- `scikit-learn`: Cosine similarity and clustering
- `numpy`: Vector operations

### Web Framework
- `fastapi`: Modern Python web framework
- `uvicorn`: ASGI server
- `pydantic`: Data validation

### Testing
- `pytest`: Testing framework
- `pytest-asyncio`: Async test support

## πŸ§ͺ Testing

### πŸ“ Test Organization (Reorganized for Clarity)

**We've reorganized the test structure for better developer experience:**

| Test Type | Location | Purpose | Framework | Count |
|-----------|----------|---------|-----------|-------|
| **Unit Tests** | `test-unit/` | Test individual components in isolation | pytest | 5 files |
| **Integration Tests** | `test-integration/` | Test complete workflows end-to-end | Standalone scripts | 16 files |

**Benefits of this structure:**
- βœ… **Clear separation** between unit and integration testing
- βœ… **Intuitive naming** - developers immediately understand test types
- βœ… **Better tooling** - can run different test types independently
- βœ… **Easier maintenance** - organized by testing strategy

> **Note**: Previously tests were mixed in `tests/` folder and root-level `test_*.py` files. The new structure provides much better organization.

### Unit Tests Details (`test-unit/`)

**What they test:** Individual components with mocking and isolation
- `test_crossword_generator.py` - Core crossword generation logic
- `test_api_routes.py` - FastAPI endpoint handlers  
- `test_crossword_generator_wrapper.py` - Service wrapper layer
- `test_index_bug_fix.py` - Specific bug fix validations
- `test_vector_search.py` - AI vector search functionality (requires torch)

### Run Unit Tests (Formal Test Suite)
```bash
# Run all unit tests
python run_tests.py

# Run specific test modules  
python run_tests.py crossword_generator
pytest test-unit/test_crossword_generator.py -v

# Run core tests (excluding AI dependencies)
pytest test-unit/ -v --ignore=test-unit/test_vector_search.py

# Run individual unit test classes
pytest test-unit/test_crossword_generator.py::TestCrosswordGenerator::test_init -v
```

### Integration Tests Details (`test-integration/`)

**What they test:** Complete workflows without mocking - real functionality
- `test_simple_generation.py` - End-to-end crossword generation
- `test_boundary_fix.py` - Word boundary validation (our major fix!)
- `test_local.py` - Local environment and dependencies
- `test_word_boundaries.py` - Comprehensive boundary testing
- `test_bounds_comprehensive.py` - Advanced bounds checking
- `test_final_validation.py` - API integration testing
- And 10 more specialized feature tests...

### Run Integration Tests (End-to-End Scripts)
```bash
# Test core functionality
python test-integration/test_simple_generation.py
python test-integration/test_boundary_fix.py
python test-integration/test_local.py

# Test specific features
python test-integration/test_word_boundaries.py
python test-integration/test_bounds_comprehensive.py

# Test API integration
python test-integration/test_final_validation.py
```

### Test Coverage
```bash
# Run core tests with coverage (requires requirements-dev.txt)
pytest test-unit/test_crossword_generator.py --cov=src --cov-report=html
pytest test-unit/test_crossword_generator.py --cov=src --cov-report=term

# Full coverage report (may fail without AI dependencies)
pytest test-unit/ --cov=src --cov-report=html --ignore=test-unit/test_vector_search.py
```

### Test Status
- βœ… **Core crossword generation**: 15/19 unit tests passing
- βœ… **Boundary validation**: All integration tests passing
- ⚠️ **AI/Vector search**: Requires torch dependencies
- ⚠️ **Some async mocking**: Minor test infrastructure issues

### πŸ”„ Migration Guide (For Existing Developers)

**If you had previous commands, update them:**

| Old Command | New Command |
|-------------|-------------|
| `pytest tests/` | `pytest test-unit/` |
| `python test_simple_generation.py` | `python test-integration/test_simple_generation.py` |
| `pytest tests/ --cov=src` | `pytest test-unit/ --cov=src` |

**All functionality is preserved** - just organized better!

## πŸ”§ Configuration

### Environment Variables

The backend supports flexible configuration via environment variables:

```bash
# Cache Configuration
CACHE_DIR=/app/cache                        # Cache directory for all service files
THEMATIC_VOCAB_SIZE_LIMIT=50000            # Maximum vocabulary size (default: 100000)
THEMATIC_MODEL_NAME=all-mpnet-base-v2      # Sentence transformer model

# Core Application Settings  
PORT=7860                                  # Server port
NODE_ENV=production                        # Environment mode

# Optional
LOG_LEVEL=INFO                            # Logging level
```

### Cache Structure

The service creates the following cache files:

```
{CACHE_DIR}/
β”œβ”€β”€ vocabulary_{size}.pkl              # Processed vocabulary words
β”œβ”€β”€ frequencies_{size}.pkl             # Word frequency data
β”œβ”€β”€ embeddings_{model}_{size}.npy      # Word embeddings
└── sentence-transformers/             # Hugging Face model cache
```

## 🎯 Thematic Word Generation Process

1. **Initialization**:
   - Load WordFreq vocabulary database (319K words)
   - Filter words for crossword suitability (length, content)  
   - Load sentence-transformers model locally
   - Pre-compute embeddings for filtered vocabulary
   - Create 10-tier frequency classification system

2. **Word Generation**:
   - Get topic embedding: `"Animals" β†’ [768-dim vector]`
   - Compute cosine similarity with all vocabulary embeddings
   - Filter by similarity threshold and difficulty tier
   - Filter by crossword-specific criteria (length, etc.)
   - Return top matches with generated clues

3. **Multi-Theme Support**:
   - Detect multiple themes using clustering
   - Generate words that relate to combined themes
   - Balance word selection across different topics

## πŸ§ͺ Testing

```bash
# Local testing (without full vector search)
cd backend-py
python test_local.py

# Start development server
python app.py
```

## 🐳 Container Deployment

### Docker Run with Cache Configuration

```bash
# Basic deployment
docker run -e CACHE_DIR=/app/cache \
           -e THEMATIC_VOCAB_SIZE_LIMIT=50000 \
           -v /host/cache:/app/cache \
           -p 7860:7860 \
           your-crossword-app

# With all configuration options
docker run -e CACHE_DIR=/app/cache \
           -e THEMATIC_VOCAB_SIZE_LIMIT=25000 \
           -e THEMATIC_MODEL_NAME=all-mpnet-base-v2 \
           -e NODE_ENV=production \
           -v /host/cache:/app/cache \
           -p 7860:7860 \
           your-crossword-app
```

### Docker Compose

```yaml
version: '3.8'
services:
  crossword-backend:
    image: your-crossword-app
    environment:
      - CACHE_DIR=/app/cache
      - THEMATIC_VOCAB_SIZE_LIMIT=50000
      - THEMATIC_MODEL_NAME=all-mpnet-base-v2
      - NODE_ENV=production
    volumes:
      - ./cache:/app/cache
    ports:
      - "7860:7860"
    restart: unless-stopped
```

### Pre-built Cache Strategy (Recommended)

For production deployments, pre-build the cache to avoid long startup times:

```bash
# 1. Build cache locally or in a build container
export CACHE_DIR=/local/cache
export THEMATIC_VOCAB_SIZE_LIMIT=50000
python -c "from src.services.thematic_word_service import ThematicWordService; s=ThematicWordService(); s.initialize()"

# 2. Deploy with pre-built cache (read-only mount)
docker run -e CACHE_DIR=/app/cache \
           -v /local/cache:/app/cache:ro \
           -p 7860:7860 \
           your-crossword-app
```

### Debugging Cache Issues

If cache files are not being created in your container:

1. **Check Health Endpoints:**
```bash
# Basic health check
curl http://localhost:7860/api/health

# Detailed cache status
curl http://localhost:7860/api/health/cache

# Force cache re-initialization
curl -X POST http://localhost:7860/api/health/cache/reinitialize
```

2. **Check Container Logs:**
```bash
docker logs your-container-name
```
Look for cache directory permissions and initialization messages.

3. **Test Cache Directory:**
```bash
# Run test script to verify cache setup
docker exec your-container python test_cache_startup.py
```

4. **Common Issues:**
   - **Permission denied**: Container user can't write to mounted volume
   - **Missing dependencies**: ML libraries not installed in container
   - **Volume not mounted**: Cache directory not properly mounted
   - **Environment variables**: `CACHE_DIR` not set correctly

5. **Fix Permission Issues:**
```bash
# Option 1: Change ownership of host directory
sudo chown -R 1000:1000 /host/cache

# Option 2: Run container with specific user
docker run --user 1000:1000 ...

# Option 3: Set permissions in Dockerfile
RUN mkdir -p /app/cache && chmod 777 /app/cache
```

### Kubernetes Deployment

```yaml
apiVersion: v1
kind: ConfigMap
metadata:
  name: crossword-config
data:
  CACHE_DIR: "/app/cache"
  THEMATIC_VOCAB_SIZE_LIMIT: "50000"
  THEMATIC_MODEL_NAME: "all-mpnet-base-v2"
  NODE_ENV: "production"
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: crossword-cache
spec:
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 5Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: crossword-backend
spec:
  replicas: 1
  selector:
    matchLabels:
      app: crossword-backend
  template:
    metadata:
      labels:
        app: crossword-backend
    spec:
      containers:
      - name: backend
        image: your-crossword-app
        envFrom:
        - configMapRef:
            name: crossword-config
        volumeMounts:
        - name: cache-volume
          mountPath: /app/cache
        ports:
        - containerPort: 7860
      volumes:
      - name: cache-volume
        persistentVolumeClaim:
          claimName: crossword-cache
```

## πŸ§ͺ Testing

### Quick Test
```bash
# Basic functionality test (no model download)
python test_local.py
```

### Comprehensive Unit Tests
```bash
# Run all unit tests
python run_tests.py

# Or use pytest directly
pytest tests/ -v

# Run specific test file
python run_tests.py crossword_generator_fixed
pytest tests/test_crossword_generator_fixed.py -v

# Run with coverage
pytest tests/ --cov=src --cov-report=html
```

### Test Structure
- `tests/test_crossword_generator_fixed.py` - Core grid generation logic
- `tests/test_vector_search.py` - Vector similarity search 
- `tests/test_crossword_generator_wrapper.py` - Service wrapper
- `tests/test_api_routes.py` - FastAPI endpoints

### Key Test Features
- βœ… **Index alignment fix**: Tests the list index out of range bug fix
- βœ… **Mocked vector search**: Tests without downloading models
- βœ… **API validation**: Tests all endpoints and error cases
- βœ… **Async support**: Full pytest-asyncio integration
- βœ… **Error handling**: Tests malformed inputs and edge cases

## πŸ“Š Performance Comparison

**Startup Time**:
- JavaScript: ~2 seconds
- Python: ~30-60 seconds (model download + embedding generation)
- Python (with cache): ~5-10 seconds

**Word Quality**:
- JavaScript: Limited by static word lists (~100 words/topic)
- Python: Rich thematic generation from 319K word database

**Memory Usage**:
- JavaScript: ~100MB
- Python: ~500MB-1GB (model + embeddings)
- Cache Size: ~50-200MB per 50K vocabulary

**API Response Time**:
- JavaScript: ~100ms (static word lookup)
- Python: ~200-500ms (semantic similarity computation)

**Cache Performance**:
- Vocabulary loading: ~1-2 seconds from cache vs 30+ seconds generation
- Embeddings loading: ~2-5 seconds from cache vs 60+ seconds generation

## πŸ”„ Migration Strategy

1. **Phase 1** βœ…: Basic Python backend structure
2. **Phase 2**: Test vector search functionality  
3. **Phase 3**: Docker deployment and production testing
4. **Phase 4**: Compare with JavaScript backend
5. **Phase 5**: Production switch with rollback capability

## 🎯 Next Steps

- [x] Replace vector search with thematic word generation
- [x] Implement environment variable cache configuration  
- [x] Add 10-tier difficulty system based on word frequency
- [ ] Optimize embedding computation performance
- [ ] Add more sophisticated crossword grid generation
- [ ] Implement LLM-based clue generation
- [ ] Add cache warming strategies for production deployment