File size: 16,179 Bytes
486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 38c016b 486eff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
# Python Backend with Thematic AI Word Generation
This is the Python implementation of the crossword generator backend, featuring AI-powered thematic word generation using WordFreq vocabulary and semantic embeddings.
## π Features
- **Thematic Word Generation**: Uses sentence-transformers for semantic word discovery from WordFreq vocabulary
- **319K+ Word Database**: Comprehensive vocabulary from WordFreq with frequency data
- **10-Tier Difficulty System**: Smart word selection based on frequency tiers
- **Environment Variable Configuration**: Flexible cache and model configuration
- **FastAPI**: Modern, fast Python web framework
- **Same API**: Compatible with existing React frontend
## π Differences from JavaScript Backend
| Feature | JavaScript Backend | Python Backend |
|---------|-------------------|----------------|
| **Word Generation** | Static word lists | Thematic AI word generation from 319K vocabulary |
| **Vocabulary Size** | ~100 words per topic | Filtered from 319K WordFreq database |
| **AI Approach** | Basic filtering | Semantic similarity with frequency tiers |
| **Performance** | Fast but limited | Slower startup, richer word selection |
| **Dependencies** | Node.js + static files | Python + ML libraries |
## π οΈ Setup & Installation
### Prerequisites
- Python 3.11+ (3.11 recommended for Docker compatibility)
- pip (Python package manager)
### Basic Setup (Core Functionality)
```bash
# Clone and navigate to backend directory
cd crossword-app/backend-py
# Create virtual environment (recommended)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install core dependencies
pip install -r requirements.txt
# Start the server
python app.py
```
### Full Development Setup (with AI features)
```bash
# Install development dependencies including AI/ML libraries
pip install -r requirements-dev.txt
# This includes:
# - All core dependencies
# - AI/ML libraries (torch, sentence-transformers, etc.)
# - Development tools (pytest, coverage, etc.)
```
### Requirements Files
- **`requirements.txt`**: Core dependencies for basic functionality
- **`requirements-dev.txt`**: Full development environment with AI features
> **Note**: The AI/ML dependencies are large (~2GB). For basic testing without AI features, use `requirements.txt` only.
> **Python Version**: Both local development and Docker use Python 3.11+ for optimal performance and latest package compatibility.
## π Structure
```
backend-py/
βββ app.py # FastAPI application entry point
βββ requirements.txt # Core Python dependencies
βββ requirements-dev.txt # Full development dependencies
βββ src/
β βββ services/
β β βββ thematic_word_service.py # Thematic AI word generation
β β βββ crossword_generator.py # Puzzle generation logic
β β βββ crossword_generator_wrapper.py # Service wrapper
β βββ routes/
β βββ api.py # API endpoints (matches JS backend)
βββ test-unit/ # Unit tests (pytest framework) - 5 files
β βββ test_crossword_generator.py
β βββ test_api_routes.py
β βββ test_vector_search.py
βββ test-integration/ # Integration tests (standalone scripts) - 16 files
β βββ test_simple_generation.py
β βββ test_boundary_fix.py
β βββ test_local.py # (+ 13 more test files)
βββ data/ -> ../backend/data/ # Symlink to shared word data
βββ public/ # Frontend static files (copied during build)
```
## π Dependencies
### Core ML Stack
- `sentence-transformers`: Local model loading and embeddings
- `wordfreq`: 319K word vocabulary with frequency data
- `torch`: PyTorch for model inference
- `scikit-learn`: Cosine similarity and clustering
- `numpy`: Vector operations
### Web Framework
- `fastapi`: Modern Python web framework
- `uvicorn`: ASGI server
- `pydantic`: Data validation
### Testing
- `pytest`: Testing framework
- `pytest-asyncio`: Async test support
## π§ͺ Testing
### π Test Organization (Reorganized for Clarity)
**We've reorganized the test structure for better developer experience:**
| Test Type | Location | Purpose | Framework | Count |
|-----------|----------|---------|-----------|-------|
| **Unit Tests** | `test-unit/` | Test individual components in isolation | pytest | 5 files |
| **Integration Tests** | `test-integration/` | Test complete workflows end-to-end | Standalone scripts | 16 files |
**Benefits of this structure:**
- β
**Clear separation** between unit and integration testing
- β
**Intuitive naming** - developers immediately understand test types
- β
**Better tooling** - can run different test types independently
- β
**Easier maintenance** - organized by testing strategy
> **Note**: Previously tests were mixed in `tests/` folder and root-level `test_*.py` files. The new structure provides much better organization.
### Unit Tests Details (`test-unit/`)
**What they test:** Individual components with mocking and isolation
- `test_crossword_generator.py` - Core crossword generation logic
- `test_api_routes.py` - FastAPI endpoint handlers
- `test_crossword_generator_wrapper.py` - Service wrapper layer
- `test_index_bug_fix.py` - Specific bug fix validations
- `test_vector_search.py` - AI vector search functionality (requires torch)
### Run Unit Tests (Formal Test Suite)
```bash
# Run all unit tests
python run_tests.py
# Run specific test modules
python run_tests.py crossword_generator
pytest test-unit/test_crossword_generator.py -v
# Run core tests (excluding AI dependencies)
pytest test-unit/ -v --ignore=test-unit/test_vector_search.py
# Run individual unit test classes
pytest test-unit/test_crossword_generator.py::TestCrosswordGenerator::test_init -v
```
### Integration Tests Details (`test-integration/`)
**What they test:** Complete workflows without mocking - real functionality
- `test_simple_generation.py` - End-to-end crossword generation
- `test_boundary_fix.py` - Word boundary validation (our major fix!)
- `test_local.py` - Local environment and dependencies
- `test_word_boundaries.py` - Comprehensive boundary testing
- `test_bounds_comprehensive.py` - Advanced bounds checking
- `test_final_validation.py` - API integration testing
- And 10 more specialized feature tests...
### Run Integration Tests (End-to-End Scripts)
```bash
# Test core functionality
python test-integration/test_simple_generation.py
python test-integration/test_boundary_fix.py
python test-integration/test_local.py
# Test specific features
python test-integration/test_word_boundaries.py
python test-integration/test_bounds_comprehensive.py
# Test API integration
python test-integration/test_final_validation.py
```
### Test Coverage
```bash
# Run core tests with coverage (requires requirements-dev.txt)
pytest test-unit/test_crossword_generator.py --cov=src --cov-report=html
pytest test-unit/test_crossword_generator.py --cov=src --cov-report=term
# Full coverage report (may fail without AI dependencies)
pytest test-unit/ --cov=src --cov-report=html --ignore=test-unit/test_vector_search.py
```
### Test Status
- β
**Core crossword generation**: 15/19 unit tests passing
- β
**Boundary validation**: All integration tests passing
- β οΈ **AI/Vector search**: Requires torch dependencies
- β οΈ **Some async mocking**: Minor test infrastructure issues
### π Migration Guide (For Existing Developers)
**If you had previous commands, update them:**
| Old Command | New Command |
|-------------|-------------|
| `pytest tests/` | `pytest test-unit/` |
| `python test_simple_generation.py` | `python test-integration/test_simple_generation.py` |
| `pytest tests/ --cov=src` | `pytest test-unit/ --cov=src` |
**All functionality is preserved** - just organized better!
## π§ Configuration
### Environment Variables
The backend supports flexible configuration via environment variables:
```bash
# Cache Configuration
CACHE_DIR=/app/cache # Cache directory for all service files
THEMATIC_VOCAB_SIZE_LIMIT=50000 # Maximum vocabulary size (default: 100000)
THEMATIC_MODEL_NAME=all-mpnet-base-v2 # Sentence transformer model
# Core Application Settings
PORT=7860 # Server port
NODE_ENV=production # Environment mode
# Optional
LOG_LEVEL=INFO # Logging level
```
### Cache Structure
The service creates the following cache files:
```
{CACHE_DIR}/
βββ vocabulary_{size}.pkl # Processed vocabulary words
βββ frequencies_{size}.pkl # Word frequency data
βββ embeddings_{model}_{size}.npy # Word embeddings
βββ sentence-transformers/ # Hugging Face model cache
```
## π― Thematic Word Generation Process
1. **Initialization**:
- Load WordFreq vocabulary database (319K words)
- Filter words for crossword suitability (length, content)
- Load sentence-transformers model locally
- Pre-compute embeddings for filtered vocabulary
- Create 10-tier frequency classification system
2. **Word Generation**:
- Get topic embedding: `"Animals" β [768-dim vector]`
- Compute cosine similarity with all vocabulary embeddings
- Filter by similarity threshold and difficulty tier
- Filter by crossword-specific criteria (length, etc.)
- Return top matches with generated clues
3. **Multi-Theme Support**:
- Detect multiple themes using clustering
- Generate words that relate to combined themes
- Balance word selection across different topics
## π§ͺ Testing
```bash
# Local testing (without full vector search)
cd backend-py
python test_local.py
# Start development server
python app.py
```
## π³ Container Deployment
### Docker Run with Cache Configuration
```bash
# Basic deployment
docker run -e CACHE_DIR=/app/cache \
-e THEMATIC_VOCAB_SIZE_LIMIT=50000 \
-v /host/cache:/app/cache \
-p 7860:7860 \
your-crossword-app
# With all configuration options
docker run -e CACHE_DIR=/app/cache \
-e THEMATIC_VOCAB_SIZE_LIMIT=25000 \
-e THEMATIC_MODEL_NAME=all-mpnet-base-v2 \
-e NODE_ENV=production \
-v /host/cache:/app/cache \
-p 7860:7860 \
your-crossword-app
```
### Docker Compose
```yaml
version: '3.8'
services:
crossword-backend:
image: your-crossword-app
environment:
- CACHE_DIR=/app/cache
- THEMATIC_VOCAB_SIZE_LIMIT=50000
- THEMATIC_MODEL_NAME=all-mpnet-base-v2
- NODE_ENV=production
volumes:
- ./cache:/app/cache
ports:
- "7860:7860"
restart: unless-stopped
```
### Pre-built Cache Strategy (Recommended)
For production deployments, pre-build the cache to avoid long startup times:
```bash
# 1. Build cache locally or in a build container
export CACHE_DIR=/local/cache
export THEMATIC_VOCAB_SIZE_LIMIT=50000
python -c "from src.services.thematic_word_service import ThematicWordService; s=ThematicWordService(); s.initialize()"
# 2. Deploy with pre-built cache (read-only mount)
docker run -e CACHE_DIR=/app/cache \
-v /local/cache:/app/cache:ro \
-p 7860:7860 \
your-crossword-app
```
### Debugging Cache Issues
If cache files are not being created in your container:
1. **Check Health Endpoints:**
```bash
# Basic health check
curl http://localhost:7860/api/health
# Detailed cache status
curl http://localhost:7860/api/health/cache
# Force cache re-initialization
curl -X POST http://localhost:7860/api/health/cache/reinitialize
```
2. **Check Container Logs:**
```bash
docker logs your-container-name
```
Look for cache directory permissions and initialization messages.
3. **Test Cache Directory:**
```bash
# Run test script to verify cache setup
docker exec your-container python test_cache_startup.py
```
4. **Common Issues:**
- **Permission denied**: Container user can't write to mounted volume
- **Missing dependencies**: ML libraries not installed in container
- **Volume not mounted**: Cache directory not properly mounted
- **Environment variables**: `CACHE_DIR` not set correctly
5. **Fix Permission Issues:**
```bash
# Option 1: Change ownership of host directory
sudo chown -R 1000:1000 /host/cache
# Option 2: Run container with specific user
docker run --user 1000:1000 ...
# Option 3: Set permissions in Dockerfile
RUN mkdir -p /app/cache && chmod 777 /app/cache
```
### Kubernetes Deployment
```yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: crossword-config
data:
CACHE_DIR: "/app/cache"
THEMATIC_VOCAB_SIZE_LIMIT: "50000"
THEMATIC_MODEL_NAME: "all-mpnet-base-v2"
NODE_ENV: "production"
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: crossword-cache
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: crossword-backend
spec:
replicas: 1
selector:
matchLabels:
app: crossword-backend
template:
metadata:
labels:
app: crossword-backend
spec:
containers:
- name: backend
image: your-crossword-app
envFrom:
- configMapRef:
name: crossword-config
volumeMounts:
- name: cache-volume
mountPath: /app/cache
ports:
- containerPort: 7860
volumes:
- name: cache-volume
persistentVolumeClaim:
claimName: crossword-cache
```
## π§ͺ Testing
### Quick Test
```bash
# Basic functionality test (no model download)
python test_local.py
```
### Comprehensive Unit Tests
```bash
# Run all unit tests
python run_tests.py
# Or use pytest directly
pytest tests/ -v
# Run specific test file
python run_tests.py crossword_generator_fixed
pytest tests/test_crossword_generator_fixed.py -v
# Run with coverage
pytest tests/ --cov=src --cov-report=html
```
### Test Structure
- `tests/test_crossword_generator_fixed.py` - Core grid generation logic
- `tests/test_vector_search.py` - Vector similarity search
- `tests/test_crossword_generator_wrapper.py` - Service wrapper
- `tests/test_api_routes.py` - FastAPI endpoints
### Key Test Features
- β
**Index alignment fix**: Tests the list index out of range bug fix
- β
**Mocked vector search**: Tests without downloading models
- β
**API validation**: Tests all endpoints and error cases
- β
**Async support**: Full pytest-asyncio integration
- β
**Error handling**: Tests malformed inputs and edge cases
## π Performance Comparison
**Startup Time**:
- JavaScript: ~2 seconds
- Python: ~30-60 seconds (model download + embedding generation)
- Python (with cache): ~5-10 seconds
**Word Quality**:
- JavaScript: Limited by static word lists (~100 words/topic)
- Python: Rich thematic generation from 319K word database
**Memory Usage**:
- JavaScript: ~100MB
- Python: ~500MB-1GB (model + embeddings)
- Cache Size: ~50-200MB per 50K vocabulary
**API Response Time**:
- JavaScript: ~100ms (static word lookup)
- Python: ~200-500ms (semantic similarity computation)
**Cache Performance**:
- Vocabulary loading: ~1-2 seconds from cache vs 30+ seconds generation
- Embeddings loading: ~2-5 seconds from cache vs 60+ seconds generation
## π Migration Strategy
1. **Phase 1** β
: Basic Python backend structure
2. **Phase 2**: Test vector search functionality
3. **Phase 3**: Docker deployment and production testing
4. **Phase 4**: Compare with JavaScript backend
5. **Phase 5**: Production switch with rollback capability
## π― Next Steps
- [x] Replace vector search with thematic word generation
- [x] Implement environment variable cache configuration
- [x] Add 10-tier difficulty system based on word frequency
- [ ] Optimize embedding computation performance
- [ ] Add more sophisticated crossword grid generation
- [ ] Implement LLM-based clue generation
- [ ] Add cache warming strategies for production deployment |