File size: 4,286 Bytes
cc5b602
ae90620
6f619d7
ae90620
6386510
 
51a7d9e
6386510
51a7d9e
 
6386510
e6367a7
 
6386510
51a7d9e
bd34f0b
6a0c6b9
6386510
 
bd34f0b
6386510
bd34f0b
 
51a7d9e
6386510
51a7d9e
 
bd34f0b
 
 
 
 
 
 
51a7d9e
 
da59244
6386510
 
 
 
 
 
 
bbd8145
ae90620
 
51a7d9e
 
85585d6
27dc368
690d573
85585d6
27dc368
51a7d9e
fd6304d
85585d6
6386510
 
 
 
 
 
 
279ff55
 
 
 
6386510
 
 
51a7d9e
6386510
 
 
27dc368
f01a45c
6386510
 
f01a45c
27dc368
51a7d9e
6386510
51a7d9e
82b38de
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b38de
51a7d9e
 
3569c20
51a7d9e
 
bd34f0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51a7d9e
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import os
import threading as Thread
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr


HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID", None)
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>internlm2.5-7b-chat</center></h1>"

DESCRIPTION = f"""
<h3>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
"""
PLACEHOLDER = """
<center>
<p>Feel free to test models <b>without</b> any logs.</p>
</center>
"""


CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID, 
    torch_dtype=torch.float16, 
    trust_remote_code=True).cuda()
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)

model = model.eval()

@spaces.GPU()
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, penalty: float):   
    conversation = []
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])
    conversation.append({"role": "user", "content": message})

    print(f"Conversation is -\n{conversation}")

    input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})

    generate_kwargs = dict(
        input_ids=input_ids, 
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        top_k=top_k,
        repetition_penalty=penalty,
        do_sample=True, 
        temperature=temperature,
        eos_token_id = [2,92542],
    )
    
    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=2048,
                step=1,
                value=1024,
                label="Max New Tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=0.8,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.0,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
            ["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
            ["Tell me a random fun fact about the Roman Empire."],
            ["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()