File size: 6,909 Bytes
2ba49a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
from ..models import SDUNet, SDMotionModel, SDXLUNet, SDXLMotionModel
from ..models.sd_unet import PushBlock, PopBlock
from ..controlnets import MultiControlNetManager


def lets_dance(
    unet: SDUNet,
    motion_modules: SDMotionModel = None,
    controlnet: MultiControlNetManager = None,
    sample = None,
    timestep = None,
    encoder_hidden_states = None,
    ipadapter_kwargs_list = {},
    controlnet_frames = None,
    unet_batch_size = 1,
    controlnet_batch_size = 1,
    cross_frame_attention = False,
    tiled=False,
    tile_size=64,
    tile_stride=32,
    device = "cuda",
    vram_limit_level = 0,
):
    # 1. ControlNet
    #     This part will be repeated on overlapping frames if animatediff_batch_size > animatediff_stride.
    #     I leave it here because I intend to do something interesting on the ControlNets.
    controlnet_insert_block_id = 30
    if controlnet is not None and controlnet_frames is not None:
        res_stacks = []
        # process controlnet frames with batch
        for batch_id in range(0, sample.shape[0], controlnet_batch_size):
            batch_id_ = min(batch_id + controlnet_batch_size, sample.shape[0])
            res_stack = controlnet(
                sample[batch_id: batch_id_],
                timestep,
                encoder_hidden_states[batch_id: batch_id_],
                controlnet_frames[:, batch_id: batch_id_],
                tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
            )
            if vram_limit_level >= 1:
                res_stack = [res.cpu() for res in res_stack]
            res_stacks.append(res_stack)
        # concat the residual
        additional_res_stack = []
        for i in range(len(res_stacks[0])):
            res = torch.concat([res_stack[i] for res_stack in res_stacks], dim=0)
            additional_res_stack.append(res)
    else:
        additional_res_stack = None

    # 2. time
    time_emb = unet.time_proj(timestep[None]).to(sample.dtype)
    time_emb = unet.time_embedding(time_emb)

    # 3. pre-process
    height, width = sample.shape[2], sample.shape[3]
    hidden_states = unet.conv_in(sample)
    text_emb = encoder_hidden_states
    res_stack = [hidden_states.cpu() if vram_limit_level>=1 else hidden_states]

    # 4. blocks
    for block_id, block in enumerate(unet.blocks):
        # 4.1 UNet
        if isinstance(block, PushBlock):
            hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
            if vram_limit_level>=1:
                res_stack[-1] = res_stack[-1].cpu()
        elif isinstance(block, PopBlock):
            if vram_limit_level>=1:
                res_stack[-1] = res_stack[-1].to(device)
            hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
        else:
            hidden_states_input = hidden_states
            hidden_states_output = []
            for batch_id in range(0, sample.shape[0], unet_batch_size):
                batch_id_ = min(batch_id + unet_batch_size, sample.shape[0])
                hidden_states, _, _, _ = block(
                    hidden_states_input[batch_id: batch_id_],
                    time_emb,
                    text_emb[batch_id: batch_id_],
                    res_stack,
                    cross_frame_attention=cross_frame_attention,
                    ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {}),
                    tiled=tiled, tile_size=tile_size, tile_stride=tile_stride
                )
                hidden_states_output.append(hidden_states)
            hidden_states = torch.concat(hidden_states_output, dim=0)
        # 4.2 AnimateDiff
        if motion_modules is not None:
            if block_id in motion_modules.call_block_id:
                motion_module_id = motion_modules.call_block_id[block_id]
                hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id](
                    hidden_states, time_emb, text_emb, res_stack,
                    batch_size=1
                )
        # 4.3 ControlNet
        if block_id == controlnet_insert_block_id and additional_res_stack is not None:
            hidden_states += additional_res_stack.pop().to(device)
            if vram_limit_level>=1:
                res_stack = [(res.to(device) + additional_res.to(device)).cpu() for res, additional_res in zip(res_stack, additional_res_stack)]
            else:
                res_stack = [res + additional_res for res, additional_res in zip(res_stack, additional_res_stack)]
    
    # 5. output
    hidden_states = unet.conv_norm_out(hidden_states)
    hidden_states = unet.conv_act(hidden_states)
    hidden_states = unet.conv_out(hidden_states)

    return hidden_states




def lets_dance_xl(
    unet: SDXLUNet,
    motion_modules: SDXLMotionModel = None,
    controlnet: MultiControlNetManager = None,
    sample = None,
    add_time_id = None,
    add_text_embeds = None,
    timestep = None,
    encoder_hidden_states = None,
    ipadapter_kwargs_list = {},
    controlnet_frames = None,
    unet_batch_size = 1,
    controlnet_batch_size = 1,
    cross_frame_attention = False,
    tiled=False,
    tile_size=64,
    tile_stride=32,
    device = "cuda",
    vram_limit_level = 0,
):
    # 2. time
    t_emb = unet.time_proj(timestep[None]).to(sample.dtype)
    t_emb = unet.time_embedding(t_emb)

    time_embeds = unet.add_time_proj(add_time_id)
    time_embeds = time_embeds.reshape((add_text_embeds.shape[0], -1))
    add_embeds = torch.concat([add_text_embeds, time_embeds], dim=-1)
    add_embeds = add_embeds.to(sample.dtype)
    add_embeds = unet.add_time_embedding(add_embeds)

    time_emb = t_emb + add_embeds

    # 3. pre-process
    height, width = sample.shape[2], sample.shape[3]
    hidden_states = unet.conv_in(sample)
    text_emb = encoder_hidden_states
    res_stack = [hidden_states]

    # 4. blocks
    for block_id, block in enumerate(unet.blocks):
        hidden_states, time_emb, text_emb, res_stack = block(
            hidden_states, time_emb, text_emb, res_stack,
            tiled=tiled, tile_size=tile_size, tile_stride=tile_stride,
            ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, {})
        )
        # 4.2 AnimateDiff
        if motion_modules is not None:
            if block_id in motion_modules.call_block_id:
                motion_module_id = motion_modules.call_block_id[block_id]
                hidden_states, time_emb, text_emb, res_stack = motion_modules.motion_modules[motion_module_id](
                    hidden_states, time_emb, text_emb, res_stack,
                    batch_size=1
                )

    # 5. output
    hidden_states = unet.conv_norm_out(hidden_states)
    hidden_states = unet.conv_act(hidden_states)
    hidden_states = unet.conv_out(hidden_states)

    return hidden_states