Spaces:
Paused
Paused
File size: 4,053 Bytes
59c3dd8 ef187eb 3cf95dc 0cffd40 24478b9 ef187eb 2b0f02c 24478b9 96fa82a 24478b9 eb7c9df 24478b9 fec3be6 24478b9 fec3be6 8b1e96d 3cf95dc 3599676 ec35e66 4efab5c ec35e66 4efab5c 8b1e96d a0f72b8 96fa82a fec3be6 24478b9 96fa82a 24478b9 4429dd4 3cf95dc d94350f 24478b9 96fa82a 11fa80e 24478b9 d06d30a 96fa82a 24478b9 d06d30a 24478b9 0cffd40 8b3ca8d 24478b9 8b3ca8d 0cffd40 3958ec9 8b1e96d 0cffd40 4efab5c 24478b9 db04c05 24478b9 44ee61c db04c05 44ee61c db04c05 24478b9 96fa82a 24478b9 8b3ca8d 24478b9 fe16630 4b5a4e3 8b3ca8d 8b1e96d 24478b9 8b1e96d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import gradio as gr
import torch
import numpy as np
import spaces
import random
from PIL import Image
from glob import glob
from pathlib import Path
from typing import Optional
from diffsynth import ModelManager, SVDVideoPipeline, HunyuanDiTImagePipeline
from diffsynth import ModelManager
from diffusers.utils import load_image, export_to_video
import uuid
from huggingface_hub import hf_hub_download
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Constants
MAX_SEED = np.iinfo(np.int32).max
CSS = """
footer {
visibility: hidden;
}
"""
JS = """function () {
gradioURL = window.location.href
if (!gradioURL.endsWith('?__theme=dark')) {
window.location.replace(gradioURL + '?__theme=dark');
}
}"""
# Ensure model and scheduler are initialized in GPU-enabled function
if torch.cuda.is_available():
model_manager = ModelManager(
torch_dtype=torch.float16,
device="cuda",
model_id_list=["stable-video-diffusion-img2vid-xt", "ExVideo-SVD-128f-v1"])
pipe = SVDVideoPipeline.from_model_manager(model_manager)
# function source codes modified from multimodalart/stable-video-diffusion
@spaces.GPU(duration=120)
def generate(
image: Image,
seed: Optional[int] = -1,
motion_bucket_id: int = 127,
fps_id: int = 25,
output_folder: str = "outputs",
progress=gr.Progress(track_tqdm=True)):
if seed == -1:
seed = random.randint(0, MAX_SEED)
if image.mode == "RGBA":
image = image.convert("RGB")
torch.manual_seed(seed)
os.makedirs(output_folder, exist_ok=True)
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
frames = pipe(
input_image=image.resize((512, 512)),
num_frames=128,
fps=fps_id,
height=512,
width=512,
motion_bucket_id=motion_bucket_id,
num_inference_steps=50,
min_cfg_scale=2,
max_cfg_scale=2,
contrast_enhance_scale=1.2
).frames[0]
export_to_video(frames, video_path, fps=fps_id)
return video_path, seed
examples = [
"./train.jpg",
"./girl.webp",
"./robo.jpg",
]
# Gradio Interface
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo:
gr.HTML("<h1><center>Exvideo📽️</center></h1>")
gr.HTML("<p><center><a href='https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1'>ExVideo</a> image-to-video generation<br><b>Update</b>: first version</center></p>")
with gr.Row():
image = gr.Image(label='Upload Image', height=600, scale=2)
video = gr.Video(label="Generated Video", height=600, scale=2)
with gr.Accordion("Advanced Options", open=True):
with gr.Column(scale=1):
seed = gr.Slider(
label="Seed (-1 Random)",
minimum=-1,
maximum=MAX_SEED,
step=1,
value=-1,
)
motion_bucket_id = gr.Slider(
label="Motion bucket id",
info="Controls how much motion to add/remove from the image",
value=127,
minimum=1,
maximum=255
)
fps_id = gr.Slider(
label="Frames per second",
info="The length of your video in seconds will be 25/fps",
value=25,
minimum=5,
maximum=30
)
submit_btn = gr.Button("Generate")
clear_btn = gr.ClearButton("Clear")
gr.Examples(
examples=examples,
inputs=image,
outputs=[video, seed],
fn=generate,
cache_examples="lazy",
examples_per_page=4,
)
generate_btn.click(fn=generate, inputs=[image, seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video")
demo.queue().launch() |