Spaces:
Sleeping
Sleeping
File size: 7,025 Bytes
9228cad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
from pathlib import Path
import streamlit as st
from googlesearch import search
import pandas as pd
import os
from rag_sec.document_search_system import DocumentSearchSystem
from chainguard.blockchain_logger import BlockchainLogger
from PIL import Image
from itertools import cycle
# Blockchain Logger
blockchain_logger = BlockchainLogger()
# Directory for storing uploaded files
UPLOAD_DIR = "uploaded_files"
os.makedirs(UPLOAD_DIR, exist_ok=True)
# Initialize DocumentSearchSystem
@st.cache_resource
def initialize_system():
"""Initialize the DocumentSearchSystem and load documents."""
system = DocumentSearchSystem(
neo4j_uri="neo4j+s://0ca71b10.databases.neo4j.io",
neo4j_user="neo4j",
neo4j_password="HwGDOxyGS1-79nLeTiX5bx5ohoFSpvHCmTv8IRgt-lY"
)
system.retriever.load_documents()
return system
# Initialize the system
system = initialize_system()
st.title("Memora: Secure File Upload and Search with Blockchain & Neo4j")
st.subheader("Personalized news and global updates at your fingertips")
# File Upload Section
uploaded_files = st.file_uploader("Upload your files", accept_multiple_files=True, type=['jpg', 'jpeg', 'png', 'mp4', 'avi'])
if uploaded_files:
for uploaded_file in uploaded_files:
# Save file locally
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
with open(file_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success(f"File saved locally: {file_path}")
# Display uploaded file details
if uploaded_file.type.startswith('image'):
image = Image.open(uploaded_file)
st.image(image, caption=uploaded_file.name, use_column_width=True)
# Metadata Input
album = st.text_input(f"Album for {uploaded_file.name}", "Default Album")
tags = st.text_input(f"Tags for {uploaded_file.name} (comma-separated)", "")
# Log Metadata and Transaction
if st.button(f"Log Metadata for {uploaded_file.name}"):
metadata = {"file_name": uploaded_file.name, "tags": tags.split(','), "album": album}
blockchain_details = blockchain_logger.log_data(metadata)
blockchain_hash = blockchain_details.get("block_hash", "N/A")
# Use Neo4jHandler from DocumentSearchSystem to log the transaction
system.neo4j_handler.log_relationships(uploaded_file.name, tags, blockchain_hash, [album])
st.write(f"Metadata logged successfully! Blockchain Details: {blockchain_details}")
# Blockchain Integrity Validation
if st.button("Validate Blockchain Integrity"):
is_valid = blockchain_logger.is_blockchain_valid()
st.write("Blockchain Integrity:", "Valid β
" if is_valid else "Invalid β")
# Document Search Section
st.subheader("Search Documents")
# Google Search: User-Specific News
st.subheader("1. Latest News About You")
user_name = st.text_input("Enter your name or handle to search for recent news", value="Talex Maxim")
if st.button("Search News About Me"):
if user_name:
st.write(f"Searching Google for news about **{user_name}**...")
try:
results = list(search(user_name, num_results=5))
if results:
st.success(f"Top {len(results)} results for '{user_name}':")
user_news_data = {"URL": results}
df_user_news = pd.DataFrame(user_news_data)
st.dataframe(df_user_news)
else:
st.warning("No recent news found about you.")
except Exception as e:
st.error(f"An error occurred during the search: {str(e)}")
else:
st.warning("Please enter your name or handle to search.")
# Google Search: Global News Categories
categories = ["Technology", "Sports", "Politics", "Entertainment", "Science"]
st.title("Global News Insights")
# News Results Dictionary
news_results = {}
try:
# Fetch News for Each Category
for category in categories:
try:
news_results[category] = list(search(f"latest {category} news", num_results=3))
except Exception as e:
news_results[category] = [f"Error fetching news: {str(e)}"]
# Display Results with Styled Buttons
for category, articles in news_results.items():
st.subheader(f"{category} News")
cols = st.columns(3) # Create 3 columns for the layout
if articles and "Error fetching news" not in articles[0]:
for idx, article in enumerate(articles):
with cols[idx % 3]: # Cycle through columns
st.markdown(
f"""
<div style="padding: 10px; border: 1px solid #ccc; border-radius: 5px; margin: 10px; text-align: center;">
<a href="{article}" target="_blank" style="text-decoration: none;">
<button style="background-color: #c4ccc8; color: white; border: none; padding: 10px 20px; text-align: center; display: inline-block; font-size: 16px; border-radius: 5px;">
{category}-{idx + 1}
</button>
</a>
</div>
""",
unsafe_allow_html=True,
)
else:
st.warning(f"Could not fetch news for **{category}**.")
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
# # Display results
# for category, articles in news_results.items():
# st.write(f"### Top News in {category}:")
# for idx, article in enumerate(articles, start=1):
# st.write(f"{idx}. [Read here]({article})")
# except Exception as e:
# st.error(f"An error occurred while fetching global news: {str(e)}")
# Document Search
st.subheader("3. Search Documents")
query = st.text_input("Enter your query (e.g., 'sports news', 'machine learning')")
if st.button("Search Documents"):
if query:
result = system.process_query(query)
if result["status"] == "success":
st.success(f"Query processed successfully!")
st.write("### Query Response:")
st.write(result["response"])
st.write("### Retrieved Documents:")
for idx, doc in enumerate(result["retrieved_documents"], start=1):
st.write(f"**Document {idx}:**")
st.write(doc[:500]) # Display the first 500 characters
st.write("### Blockchain Details:")
st.json(result["blockchain_details"])
elif result["status"] == "no_results":
st.warning("No relevant documents found for your query.")
elif result["status"] == "rejected":
st.error(result["message"])
else:
st.warning("Please enter a query to search.")
# Debugging Section
if st.checkbox("Show Debug Information"):
st.write(f"Total documents loaded: {len(system.retriever.documents)}")
|