File size: 6,369 Bytes
ff6113c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import joblib

# Load Dataset
df = pd.read_csv("hospital_readmissions.csv")

# Basic Info
df.info()
df.describe()

# Missing Values
print(df.isnull().sum())

# Readmission Distribution
sns.countplot(x='readmitted', data=df)
plt.title('Readmitted Class Distribution')
plt.xlabel('Readmitted (0=No, 1=Yes)')
plt.ylabel('Count')
plt.show()

# Histograms for Numeric Features
numeric_features = ['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']
df[numeric_features].hist(figsize=(10,8), bins=15)
plt.suptitle('Distribution of Numeric Features')
plt.show()

# Encoding Categorical Variables
from sklearn.preprocessing import LabelEncoder

label_encoders_file = "label_encoders.pkl"
label_encoders_2_file = "label_encoders_2.pkl"

# Load or Fit Label Encoders
if os.path.exists(label_encoders_file) and os.path.exists(label_encoders_2_file):
    print("Loading existing label encoders...")
    label_encoders = joblib.load(label_encoders_file)
    label_encoders_2 = joblib.load(label_encoders_2_file)
else:
    print("Fitting new label encoders...")
    categorical_cols = ['age', 'glucose_test', 'A1Ctest', 'change', 'diabetes_med', 'readmitted']
    label_encoders = {col: LabelEncoder() for col in categorical_cols}

    for col, le in label_encoders.items():
        df[col] = le.fit_transform(df[col].astype(str))

    categorical_cols_2 = ['medical_specialty', 'diag_1', 'diag_2', 'diag_3']
    label_encoders_2 = {col: LabelEncoder() for col in categorical_cols_2}

    for col2, le in label_encoders_2.items():
        df[col2] = le.fit_transform(df[col2].astype(str))

    joblib.dump(label_encoders, label_encoders_file)
    joblib.dump(label_encoders_2, label_encoders_2_file)
    print("Label encoders saved.")

# Feature Engineering (Interaction Terms)
from sklearn.preprocessing import PolynomialFeatures

poly = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
interaction_terms = poly.fit_transform(df[['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']])
interaction_df = pd.DataFrame(interaction_terms, columns=poly.get_feature_names_out(
    ['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']))
df = pd.concat([df, interaction_df], axis=1)

# Splitting the Data
from sklearn.model_selection import train_test_split

X = df.drop('readmitted', axis=1)
y = df['readmitted']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Remove duplicate columns
X_train = X_train.loc[:, ~X_train.columns.duplicated()]
X_test = X_test.loc[:, ~X_test.columns.duplicated()]


feature_columns_file = "feature_columns.pkl"
joblib.dump(X_train.columns.tolist(), feature_columns_file)
print(f"Feature columns saved as {feature_columns_file}")

# Define Model Filenames
rf_model_file = "rf_tuned_model.pkl"
xgb_model_file = "xgb_model.pkl"
lgbm_model_file = "lgbm_model.pkl"

# Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier

if os.path.exists(rf_model_file):
    print(f"Loading existing Random Forest model from {rf_model_file}...")
    rf_model = joblib.load(rf_model_file)
else:
    print("Training Random Forest model...")
    rf_model = RandomForestClassifier(
        bootstrap=True,
        max_depth=10,
        min_samples_leaf=4,
        min_samples_split=5,
        n_estimators=200,
        random_state=42
    )
    rf_model.fit(X_train, y_train)
    joblib.dump(rf_model, rf_model_file)
    print(f"Random Forest model saved as {rf_model_file}")

# XGBoost Classifier
from xgboost import XGBClassifier

if os.path.exists(xgb_model_file):
    print(f"Loading existing XGBoost model from {xgb_model_file}...")
    xgb_model = joblib.load(xgb_model_file)
else:
    print("Training XGBoost model...")
    xgb_model = XGBClassifier(
        n_estimators=200,
        max_depth=10,
        learning_rate=0.1,
        subsample=0.8,
        colsample_bytree=0.8,
        random_state=42
    )
    xgb_model.fit(X_train, y_train)
    joblib.dump(xgb_model, xgb_model_file)
    print(f"XGBoost model saved as {xgb_model_file}")

# LightGBM Classifier
from lightgbm import LGBMClassifier

if os.path.exists(lgbm_model_file):
    print(f"Loading existing LightGBM model from {lgbm_model_file}...")
    lgbm_model = joblib.load(lgbm_model_file)
else:
    print("Training LightGBM model...")
    lgbm_model = LGBMClassifier(
        n_estimators=200,
        max_depth=10,
        learning_rate=0.1,
        subsample=0.8,
        colsample_bytree=0.8,
        random_state=42
    )
    lgbm_model.fit(X_train, y_train)
    joblib.dump(lgbm_model, lgbm_model_file)
    print(f"LightGBM model saved as {lgbm_model_file}")

# Predictions
y_pred_rf = rf_model.predict(X_test)
y_proba_rf = rf_model.predict_proba(X_test)[:, 1]

y_pred_xgb = xgb_model.predict(X_test)
y_proba_xgb = xgb_model.predict_proba(X_test)[:, 1]

y_pred_lgbm = lgbm_model.predict(X_test)
y_proba_lgbm = lgbm_model.predict_proba(X_test)[:, 1]

# Evaluation
from sklearn.metrics import classification_report, roc_auc_score

print("Random Forest Classification Report:\n", classification_report(y_test, y_pred_rf))
print("Random Forest ROC-AUC Score:", roc_auc_score(y_test, y_proba_rf))

print("XGBoost Classification Report:\n", classification_report(y_test, y_pred_xgb))
print("XGBoost ROC-AUC Score:", roc_auc_score(y_test, y_proba_xgb))

print("LightGBM Classification Report:\n", classification_report(y_test, y_pred_lgbm))
print("LightGBM ROC-AUC Score:", roc_auc_score(y_test, y_proba_lgbm))

# Compare Models
results = {
    "Model": ["Random Forest", "XGBoost", "LightGBM"],
    "ROC-AUC Score": [roc_auc_score(y_test, y_proba_rf),
                      roc_auc_score(y_test, y_proba_xgb),
                      roc_auc_score(y_test, y_proba_lgbm)]
}

results_df = pd.DataFrame(results)
print("\nModel Performance Summary:")
print(results_df)

# Plot Model Comparison
sns.barplot(data=results_df, x="Model", y="ROC-AUC Score", palette="viridis")
plt.title("Model ROC-AUC Comparison")
plt.ylabel("ROC-AUC Score")
plt.show()