Spaces:
Sleeping
Sleeping
File size: 6,369 Bytes
ff6113c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Import Libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import os
import joblib
# Load Dataset
df = pd.read_csv("hospital_readmissions.csv")
# Basic Info
df.info()
df.describe()
# Missing Values
print(df.isnull().sum())
# Readmission Distribution
sns.countplot(x='readmitted', data=df)
plt.title('Readmitted Class Distribution')
plt.xlabel('Readmitted (0=No, 1=Yes)')
plt.ylabel('Count')
plt.show()
# Histograms for Numeric Features
numeric_features = ['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']
df[numeric_features].hist(figsize=(10,8), bins=15)
plt.suptitle('Distribution of Numeric Features')
plt.show()
# Encoding Categorical Variables
from sklearn.preprocessing import LabelEncoder
label_encoders_file = "label_encoders.pkl"
label_encoders_2_file = "label_encoders_2.pkl"
# Load or Fit Label Encoders
if os.path.exists(label_encoders_file) and os.path.exists(label_encoders_2_file):
print("Loading existing label encoders...")
label_encoders = joblib.load(label_encoders_file)
label_encoders_2 = joblib.load(label_encoders_2_file)
else:
print("Fitting new label encoders...")
categorical_cols = ['age', 'glucose_test', 'A1Ctest', 'change', 'diabetes_med', 'readmitted']
label_encoders = {col: LabelEncoder() for col in categorical_cols}
for col, le in label_encoders.items():
df[col] = le.fit_transform(df[col].astype(str))
categorical_cols_2 = ['medical_specialty', 'diag_1', 'diag_2', 'diag_3']
label_encoders_2 = {col: LabelEncoder() for col in categorical_cols_2}
for col2, le in label_encoders_2.items():
df[col2] = le.fit_transform(df[col2].astype(str))
joblib.dump(label_encoders, label_encoders_file)
joblib.dump(label_encoders_2, label_encoders_2_file)
print("Label encoders saved.")
# Feature Engineering (Interaction Terms)
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False)
interaction_terms = poly.fit_transform(df[['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']])
interaction_df = pd.DataFrame(interaction_terms, columns=poly.get_feature_names_out(
['time_in_hospital', 'n_lab_procedures', 'n_procedures', 'n_medications']))
df = pd.concat([df, interaction_df], axis=1)
# Splitting the Data
from sklearn.model_selection import train_test_split
X = df.drop('readmitted', axis=1)
y = df['readmitted']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Remove duplicate columns
X_train = X_train.loc[:, ~X_train.columns.duplicated()]
X_test = X_test.loc[:, ~X_test.columns.duplicated()]
feature_columns_file = "feature_columns.pkl"
joblib.dump(X_train.columns.tolist(), feature_columns_file)
print(f"Feature columns saved as {feature_columns_file}")
# Define Model Filenames
rf_model_file = "rf_tuned_model.pkl"
xgb_model_file = "xgb_model.pkl"
lgbm_model_file = "lgbm_model.pkl"
# Random Forest Classifier
from sklearn.ensemble import RandomForestClassifier
if os.path.exists(rf_model_file):
print(f"Loading existing Random Forest model from {rf_model_file}...")
rf_model = joblib.load(rf_model_file)
else:
print("Training Random Forest model...")
rf_model = RandomForestClassifier(
bootstrap=True,
max_depth=10,
min_samples_leaf=4,
min_samples_split=5,
n_estimators=200,
random_state=42
)
rf_model.fit(X_train, y_train)
joblib.dump(rf_model, rf_model_file)
print(f"Random Forest model saved as {rf_model_file}")
# XGBoost Classifier
from xgboost import XGBClassifier
if os.path.exists(xgb_model_file):
print(f"Loading existing XGBoost model from {xgb_model_file}...")
xgb_model = joblib.load(xgb_model_file)
else:
print("Training XGBoost model...")
xgb_model = XGBClassifier(
n_estimators=200,
max_depth=10,
learning_rate=0.1,
subsample=0.8,
colsample_bytree=0.8,
random_state=42
)
xgb_model.fit(X_train, y_train)
joblib.dump(xgb_model, xgb_model_file)
print(f"XGBoost model saved as {xgb_model_file}")
# LightGBM Classifier
from lightgbm import LGBMClassifier
if os.path.exists(lgbm_model_file):
print(f"Loading existing LightGBM model from {lgbm_model_file}...")
lgbm_model = joblib.load(lgbm_model_file)
else:
print("Training LightGBM model...")
lgbm_model = LGBMClassifier(
n_estimators=200,
max_depth=10,
learning_rate=0.1,
subsample=0.8,
colsample_bytree=0.8,
random_state=42
)
lgbm_model.fit(X_train, y_train)
joblib.dump(lgbm_model, lgbm_model_file)
print(f"LightGBM model saved as {lgbm_model_file}")
# Predictions
y_pred_rf = rf_model.predict(X_test)
y_proba_rf = rf_model.predict_proba(X_test)[:, 1]
y_pred_xgb = xgb_model.predict(X_test)
y_proba_xgb = xgb_model.predict_proba(X_test)[:, 1]
y_pred_lgbm = lgbm_model.predict(X_test)
y_proba_lgbm = lgbm_model.predict_proba(X_test)[:, 1]
# Evaluation
from sklearn.metrics import classification_report, roc_auc_score
print("Random Forest Classification Report:\n", classification_report(y_test, y_pred_rf))
print("Random Forest ROC-AUC Score:", roc_auc_score(y_test, y_proba_rf))
print("XGBoost Classification Report:\n", classification_report(y_test, y_pred_xgb))
print("XGBoost ROC-AUC Score:", roc_auc_score(y_test, y_proba_xgb))
print("LightGBM Classification Report:\n", classification_report(y_test, y_pred_lgbm))
print("LightGBM ROC-AUC Score:", roc_auc_score(y_test, y_proba_lgbm))
# Compare Models
results = {
"Model": ["Random Forest", "XGBoost", "LightGBM"],
"ROC-AUC Score": [roc_auc_score(y_test, y_proba_rf),
roc_auc_score(y_test, y_proba_xgb),
roc_auc_score(y_test, y_proba_lgbm)]
}
results_df = pd.DataFrame(results)
print("\nModel Performance Summary:")
print(results_df)
# Plot Model Comparison
sns.barplot(data=results_df, x="Model", y="ROC-AUC Score", palette="viridis")
plt.title("Model ROC-AUC Comparison")
plt.ylabel("ROC-AUC Score")
plt.show()
|