File size: 13,883 Bytes
0cf81b0
 
 
 
 
 
 
 
 
 
 
 
 
4be9721
0cf81b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67bde76
 
 
 
 
 
 
 
 
 
 
 
 
0cf81b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422c876
777beae
422c876
67bde76
 
 
 
 
0cf81b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c773ea3
0cf81b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c773ea3
0cf81b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67bde76
422c876
67bde76
 
 
 
0cf81b0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import gradio as gr
from gradio_client import Client, handle_file

import os
import shutil
from huggingface_hub import snapshot_download
import gradio as gr
from gradio_client import Client, handle_file
from mutagen.mp3 import MP3
from pydub import AudioSegment
from PIL import Image
import ffmpeg
os.chdir(os.path.dirname(os.path.abspath(__file__)))

import argparse
import uuid



#hallo_dir = snapshot_download(repo_id="fudan-generative-ai/hallo", local_dir="pretrained_models")

AUDIO_MAX_DURATION = 40000

#############
# UTILITIES #
#############

def is_mp3(file_path):
    try:
        audio = MP3(file_path)
        return True
    except Exception as e:
        return False

def convert_mp3_to_wav(mp3_file_path, wav_file_path):
    # Load the MP3 file
    audio = AudioSegment.from_mp3(mp3_file_path)
    # Export as WAV file
    audio.export(wav_file_path, format="wav")
    return wav_file_path

    
def trim_audio(file_path, output_path, max_duration):
    # Load the audio file
    audio = AudioSegment.from_wav(file_path)
    
    # Check the length of the audio in milliseconds
    audio_length = len(audio)
    
    # If the audio is longer than the maximum duration, trim it
    if audio_length > max_duration:
        trimmed_audio = audio[:max_duration]
    else:
        trimmed_audio = audio
    
    # Export the trimmed audio to a new file
    trimmed_audio.export(output_path, format="wav")

    return output_path


def add_silence_to_wav(wav_file_path, duration_s=1):
    # Load the WAV file
    audio = AudioSegment.from_wav(wav_file_path)
    # Create 1 second of silence
    silence = AudioSegment.silent(duration=duration_s * 1000)  # duration is in milliseconds
    # Add silence to the end of the audio file
    audio_with_silence = audio + silence
    # Export the modified audio
    audio_with_silence.export(wav_file_path, format="wav")
    return wav_file_path

def check_mp3(file_path):
    
    if is_mp3(file_path):
        unique_id = uuid.uuid4()
        wav_file_path = f"{os.path.splitext(file_path)[0]}-{unique_id}.wav"
        converted_audio = convert_mp3_to_wav(file_path, wav_file_path)
        print(f"File converted to {wav_file_path}")
        
        return converted_audio, gr.update(value=converted_audio, visible=True)
    else:
        print("The file is not an MP3 file.")
        
        return file_path, gr.update(value=file_path, visible=True)

def check_and_convert_webp_to_png(input_path, output_path):
    try:
        # Open the image file
        with Image.open(input_path) as img:
            # Check if the image is in WebP format
            if img.format == 'WEBP':
                # Convert and save as PNG
                img.save(output_path, 'PNG')
                print(f"Converted {input_path} to {output_path}")
                return output_path
            else:
                print(f"The file {input_path} is not in WebP format.")
                return input_path
    except IOError:
        print(f"Cannot open {input_path}. The file might not exist or is not an image.")

def convert_user_uploded_webp(input_path):

    # convert to png if necessary
    input_file = input_path
    unique_id = uuid.uuid4()
    output_file = f"converted_to_png_portrait-{unique_id}.png"
    ready_png = check_and_convert_webp_to_png(input_file, output_file)
    print(f"PORTRAIT PNG FILE: {ready_png}")
    return ready_png

def clear_audio_elms():
    return gr.update(value=None, visible=False)

def change_video_codec(input_file, output_file, codec='libx264', audio_codec='aac'):
    try:
        (
            ffmpeg
            .input(input_file)
            .output(output_file, vcodec=codec, acodec=audio_codec)
            .run(overwrite_output=True)
        )
        print(f'Successfully changed codec of {input_file} and saved as {output_file}')
    except ffmpeg.Error as e:
        print(f'Error occurred: {e.stderr.decode()}')



def get_talk(image_in, speech):
    client = Client("fffiloni/dreamtalk")
    try:
        result = client.predict(
            audio_input=handle_file(speech),
            image_path=handle_file(image_in),
            emotional_style="M030_front_neutral_level1_001.mat",
            api_name="/infer"
        )
        print(result)  # Debugging line
        return result['video']
    except Exception as e:
        print(f"Error in get_talk: {e}")
        raise gr.Error('An error occurred while loading DreamTalk: Image may not contain any face')


#######################################################
# Gradio APIs for optional image and voice generation #
#######################################################

def generate_portrait(prompt_image):
    if prompt_image is None or prompt_image == "":
        raise gr.Error("Can't generate a portrait without a prompt !")
    
    try:
        client = Client("ByteDance/SDXL-Lightning")
    except:
        raise gr.Error(f"ByteDance/SDXL-Lightning space's api might not be ready, please wait, or upload an image instead.")
    
    result = client.predict(
        prompt = prompt_image,
        ckpt = "4-Step",
        api_name = "/generate_image"
    )
    print(result)

    # convert to png if necessary
    input_file = result
    unique_id = uuid.uuid4()
    output_file = f"converted_to_png_portrait-{unique_id}.png"
    ready_png = check_and_convert_webp_to_png(input_file, output_file)
    print(f"PORTRAIT PNG FILE: {ready_png}")

    return ready_png

def generate_voice_with_parler(prompt_audio, voice_description):
    if prompt_audio is None or prompt_audio == "" :
        raise gr.Error(f"Can't generate a voice without text to synthetize !")
    if voice_description is None or voice_description == "":
        gr.Info(
            "For better control, You may want to provide a voice character description next time.",
            duration = 10,
            visible = True
        )
    try:
        client = Client("parler-tts/parler_tts_mini")
    except:
        raise gr.Error(f"parler-tts/parler_tts_mini space's api might not be ready, please wait, or upload an audio instead.")
    
    result = client.predict(
        text = prompt_audio,
        description = voice_description,
        api_name = "/gen_tts"
    )
    print(result)
    return result, gr.update(value=result, visible=True)

def get_whisperspeech(prompt_audio_whisperspeech, audio_to_clone):
    try:
        client = Client("collabora/WhisperSpeech")
    except:
        raise gr.Error(f"collabora/WhisperSpeech space's api might not be ready, please wait, or upload an audio instead.")
    
    result = client.predict(
        multilingual_text = prompt_audio_whisperspeech,
        speaker_audio = handle_file(audio_to_clone),
        speaker_url = "",
        cps = 14,
        api_name = "/whisper_speech_demo"
    )
    print(result) 
    return result, gr.update(value=result, visible=True)


########################
# TALKING PORTRAIT GEN #
########################



def pipe(portrait, voice):
    try:
        video = get_talk(portrait, voice)
        print(f"Generated video: {video}")  # Debugging line
        return video
    except Exception as e:
        print(f"Error in pipe: {e}")
        raise gr.Error('An error occurred while generating the talking portrait.')

 
    



css = '''
#col-container {
    margin: 0 auto;
}
#column-names {
    margin-top: 50px;
}
#main-group {
    background-color: none;
}
.tabs {
    background-color: unset;
}
#image-block {
    flex: 1;
}
#video-block {
    flex: 9;
}
#audio-block, #audio-clone-elm {
    flex: 1;
}
div#audio-clone-elm > .audio-container > button {
    height: 180px!important;
}
div#audio-clone-elm > .audio-container > button > .wrap {
    font-size: 0.9em;
}
#text-synth, #voice-desc{
    height: 130px;
}
#text-synth-wsp {
    height: 120px;
}
#audio-column, #result-column {
    display: flex;
}
#gen-voice-btn {
    flex: 1;
}
#parler-tab, #whisperspeech-tab {
    padding: 0;
}
#main-submit{
    flex: 1;
}
#pro-tips {
    margin-top: 50px;
}
div#warning-ready {
    background-color: #ecfdf5;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
    color: #057857!important;
}
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
.dark #warning-duplicate {
    background-color: #0c0c0c !important;
    border: 1px solid white !important;
}
'''

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # CPS - 584 Deep Learning Project by Vignesh Yanamalamanda and Srija Tatineni
        
        This can be achieved  with the help of several open-source model: Stable Diffusiion XL Lightning | Parler TextToSpeec | WhisperSpeech | SadTalker/DreamTalk
        
        
        Thanks to Professor Mehdi For Inspiring Us to be creative while learning. and FYI. 4-5 seconds of audio will take ~5 minutes per inference, please be patient.
        """)
        with gr.Row(elem_id="column-names"):
            gr.Markdown("## 1. Load Image or Type")
            gr.Markdown("## 2. Load Voice or Type")
            gr.Markdown("## 3. Result")
        with gr.Group(elem_id="main-group"):
            with gr.Row():
                with gr.Column():
                    
                    portrait = gr.Image(
                        sources = ["upload"], 
                        type = "filepath",
                        format = "png",
                        elem_id = "image-block"
                    )

                    prompt_image = gr.Textbox(
                        label = "Generate image",
                        lines = 2,
                        max_lines = 2
                    )

                    gen_image_btn = gr.Button("Generate portrait (optional)")

                with gr.Column(elem_id="audio-column"):
                    
                    voice = gr.Audio(
                        type = "filepath",
                        elem_id = "audio-block"
                    )

                    preprocess_audio_file = gr.File(visible=False)
                    

                    with gr.Tab("Parler TTS", elem_id="parler-tab"):

                        prompt_audio = gr.Textbox(
                            label = "Text to synthetize",
                            lines = 3,
                            max_lines = 3,
                            elem_id = "text-synth"
                        )

                        voice_description = gr.Textbox(
                            label = "Voice description",
                            lines = 3,
                            max_lines = 3,
                            elem_id = "voice-desc"
                        )

                        gen_voice_btn = gr.Button("Generate voice (optional)")
                    
                    with gr.Tab("WhisperSpeech", elem_id="whisperspeech-tab"):
                        prompt_audio_whisperspeech = gr.Textbox(
                            label = "Text to synthetize",
                            lines = 2,
                            max_lines = 2,
                            elem_id = "text-synth-wsp"
                        )
                        audio_to_clone = gr.Audio(
                            label = "Voice to clone",
                            type = "filepath",
                            elem_id = "audio-clone-elm"
                        )
                        gen_wsp_voice_btn = gr.Button("Generate voice clone (optional)")
                
                with gr.Column(elem_id="result-column"): 
                    
                    result = gr.Video(
                        elem_id="video-block"
                    )
                    
                    submit_btn = gr.Button("See The Magic !", elem_id="main-submit")
        
        with gr.Row(elem_id="pro-tips"):
            gr.Markdown("""
            # Project done in Summer 2024 at University of Dayton, Dayton, OH


            """)

            gr.Markdown("""
            # Application is made on Gradio and Follow up with files for reference

            """)

    portrait.upload(
        fn = convert_user_uploded_webp,
        inputs = [portrait],
        outputs = [portrait],
        queue = False,
        show_api = False
    )

    voice.upload(
        fn = check_mp3,
        inputs = [voice],
        outputs = [voice, preprocess_audio_file],
        queue = False,
        show_api = False
    )

    voice.clear(
        fn = clear_audio_elms,
        inputs = None,
        outputs = [preprocess_audio_file],
        queue = False,
        show_api = False
    )

    gen_image_btn.click(
        fn = generate_portrait,
        inputs = [prompt_image],
        outputs = [portrait],
        queue = False,
        show_api = False
    )

    gen_voice_btn.click(
        fn = generate_voice_with_parler,
        inputs = [prompt_audio, voice_description],
        outputs = [voice, preprocess_audio_file],
        queue = False,
        show_api = False
    )

    gen_wsp_voice_btn.click(
        fn = get_whisperspeech,
        inputs = [prompt_audio_whisperspeech, audio_to_clone],
        outputs = [voice, preprocess_audio_file],
        queue = False,
        show_api = False
    )

    submit_btn.click(
    fn=pipe,
    inputs=[portrait, voice],
    outputs=[result],
    show_api=False


    )
        

demo.queue(max_size=100).launch(show_error=True, show_api=False, share =True)