Spaces:
Runtime error
Runtime error
File size: 17,050 Bytes
20329e9 60d833f 20329e9 b64e04f 20329e9 b64e04f 20329e9 b64e04f 20329e9 b64e04f 20329e9 b64e04f 20329e9 eb382f3 20329e9 b64e04f 20329e9 5b2fcda 049e422 5b2fcda 20329e9 408ae47 20329e9 049e422 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import os
from git import Repo
import streamlit as st
import time
from PIL import Image
import base64
from transformers import pipeline
import spacy
import numpy as np
from sentence_transformers import SentenceTransformer
from matplotlib import colormaps
from matplotlib.colors import ListedColormap
GITHUB_PAT = os.environ['GITHUB']
SENTIMENT = os.environ['SENTIMENT']
EMBEDDING = os.environ['EMBEDDING']
if not os.path.exists('repo_directory'):
try:
Repo.clone_from(f'https://marcus-t-s:{GITHUB_PAT}@github.com/marcus-t-s/yt-comment-analyser.git', 'repo_directory' )
except:
st.error("Error: Oops there's an issue on our end, please wait a moment and try again.")
st.stop()
from repo_directory.utils.chart_utils import *
from repo_directory.youtube_comment_class import *
# Streamlit configuration
st.set_page_config(
page_title="ViewerVoice | YouTube Comment Analyser",
layout="wide",
page_icon=Image.open('images/page_icon.png')
)
# Define and load cached resources
@st.cache_resource
def load_models():
sentiment_pipeline = pipeline("sentiment-analysis", model=r"cardiffnlp/twitter-roberta-base-sentiment")
embedding_model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L6')
spacy_nlp = spacy.load("en_core_web_sm")
add_custom_stopwords(spacy_nlp, {"bring", "know", "come"})
return sentiment_pipeline, embedding_model, spacy_nlp
@st.cache_resource
def load_colors_image():
mask = np.array(Image.open('images/youtube_icon.jpg'))
Reds = colormaps['Reds']
colors = ListedColormap(Reds(np.linspace(0.4, 0.8, 256)))
with open("images/viewervoice_logo_crop.png", "rb") as img_file:
logo_image = base64.b64encode(img_file.read()).decode("utf-8")
return mask, colors, logo_image
sentiment_pipeline, embedding_model, spacy_nlp = load_models()
mask, colors, logo_image = load_colors_image()
# Hide line at the top and "made with streamlit" text
hide_decoration_bar_style = """
<style>
header {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_decoration_bar_style, unsafe_allow_html=True)
if 'YouTubeParser' not in st.session_state:
st.session_state['YouTubeParser'] = YoutubeCommentParser()
if 'comment_fig' not in st.session_state:
st.session_state["comment_fig"] = None
st.session_state["wordcloud_fig"] = None
st.session_state["topic_fig"] = None
st.session_state["sentiment_fig"] = None
if 'rerun_button' not in st.session_state:
st.session_state['rerun_button'] = "INIT"
if 'topic_filter' not in st.session_state:
st.session_state['topic_filter'] = False
if 'sentiment_filter' not in st.session_state:
st.session_state['sentiment_filter'] = False
if 'filter_state' not in st.session_state:
st.session_state['filter_state'] = "INIT"
if 'video_link' not in st.session_state:
st.session_state["video_link"] = None
if 'num_comments' not in st.session_state:
st.session_state['num_comments'] = None
# Set reference to YouTubeParser object for more concise code
yt_parser = st.session_state['YouTubeParser']
main_page = st.container()
def query_comments_button():
# Delete larger objects from session state to later replace
del st.session_state["comment_fig"]
del st.session_state["wordcloud_fig"]
del st.session_state["topic_fig"]
del st.session_state["sentiment_fig"]
del st.session_state["YouTubeParser"]
# Reset session state variables back to placeholder values
st.session_state.rerun_button = "QUERYING"
st.session_state['filter_state'] = "INIT"
st.session_state["topic_filter"] = False
st.session_state["sentiment_filter"] = False
st.session_state["semantic_filter"] = False
st.session_state["figures_built"] = False
st.session_state["comment_fig"] = None
st.session_state["wordcloud_fig"] = None
st.session_state["topic_fig"] = None
st.session_state["sentiment_fig"] = None
st.session_state["YouTubeParser"] = YoutubeCommentParser()
def filter_visuals_button():
st.session_state["filter_state"] = "FILTERING"
with st.sidebar:
st.session_state["video_link"] = st.text_input('YouTube Video URL', value="")
st.session_state["max_comments"] = st.slider(label="Maximum number of comments to query",
min_value=100,
max_value=2000,
step=100)
st.session_state["max_topics"] = st.slider(label="Maximum number of topics",
min_value=5,
max_value=20,
step=1)
st.button('Query comments :left_speech_bubble:', on_click=query_comments_button)
with main_page:
# Reduce space at the top
reduce_header_height_style = """
<style>
div.block-container {padding-top:0rem;}
div.block-container {padding-bottom:1rem;}
div.block-container {padding-left:1.5rem;}
</style>
"""
st.markdown(reduce_header_height_style, unsafe_allow_html=True)
# Title and intro section
markdown_content = f"""
<div style='display: flex; align-items: center; justify-content: center;'>
<img src='data:image/png;base64,{logo_image}' height='135px';/>
</div>
"""
st.markdown(markdown_content, unsafe_allow_html=True)
# LinkedIn links
lnk = '<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">'
st.markdown(lnk + """
<div style="display: flex; justify-content: center; align-items: center; flex-direction: column;">
<br>
<p style="text-align: center;"><b>Made by</b>
<b>
<a href='https://www.linkedin.com/in/afiba-7715ab166/' style="text-decoration: none">
<i class='fa fa-linkedin-square'></i> <span style='color: #000000'>Afiba Annor</span></a>
<a href='https://www.linkedin.com/in/marcus-singh-305927172/' style="text-decoration: none">
<i class='fa fa-linkedin-square'></i> <span style='color: #000000'>Marcus Singh</span></a>
</b></p>
</div>
""", unsafe_allow_html=True)
st.markdown("<hr>", unsafe_allow_html=True)
# Notes section
st.markdown("<p style='font-size: 1.3rem;'><b>📝 Notes</b></p>", unsafe_allow_html=True)
html_content = """
<ul>
<li style='font-size: 0.95rem;'>This dashboard is still under development; further updates will be implemented
in due course.</li>
<li style='font-size: 0.95rem;'>Currently, the dashboard exclusively caters to comments in English and does not
include comment replies.</li>
<li style='font-size: 0.95rem;'>Comments undergo cleaning and pre-processing to optimise modelling. As a result,
the returned comment count may fall short of the maximum queried amount.</li>
<li style='font-size: 0.95rem;'>Please note that the sentiment analysis currently does not take emojis into
account.</li>
<li style='font-size: 0.95rem;'>For optimal performance of the current topic model, we recommend retrieving
thousands of comments.</li>
<li style='font-size: 0.95rem;'>Please anticipate that querying comments and running the models may require
a few minutes to complete.</li>
</ul>
<hr>
"""
# Display the HTML content using st.markdown()
st.markdown(html_content, unsafe_allow_html=True)
# Query comments section
if (st.session_state.rerun_button == "QUERYING") and (st.session_state["video_link"] is not None):
with st.spinner('Querying comments and running models'):
yt_parser = st.session_state["YouTubeParser"]
try:
yt_parser.get_comments(st.session_state['video_link'], st.session_state['max_comments'])
yt_parser.get_video_title(st.session_state['video_link'])
except:
st.error("Error: Unable to query comments, incorrect YouTube URL.")
st.stop()
# Run formatting and models
try:
yt_parser.format_comments()
yt_parser.clean_comments()
yt_parser.run_sentiment_pipeline(sentiment_pipeline)
yt_parser.run_topic_modelling_pipeline(embedding_model,
nlp=spacy_nlp,
max_topics=st.session_state['max_topics'])
except ValueError:
st.error("Error: Oops there are not enough comments to analyse, please try a different video.")
st.stop()
except:
st.error("Error: Oops there's an issue on our end, please wait a moment and try again.")
st.stop()
# Set "QUERY COMPLETE" to bypass running this section on script re-run
st.session_state.rerun_button = "QUERY COMPLETE"
# Once comments are queried, build charts ready to visualise
if st.session_state.rerun_button == "QUERY COMPLETE":
# Check for built figures:
if (not st.session_state["figures_built"]) or (st.session_state.filter_state == "FILTERING"):
# Select colors for wordcloud
# If filtering button pressed
if st.session_state.filter_state == "FILTERING":
df_filtered = yt_parser.df_comments.copy()
if st.session_state["topic_filter"]:
df_filtered = df_filtered.query(f"Topic == {st.session_state.topic_filter}")
if st.session_state["sentiment_filter"]:
df_filtered = df_filtered.query(f"Sentiment == {st.session_state.sentiment_filter}")
if st.session_state["semantic_filter"]:
df_filtered = semantic_search(df=df_filtered, query=st.session_state["semantic_filter"],
embedding_model=embedding_model,
text_col='Comment_Clean')
if len(df_filtered) == 0:
st.session_state['num_comments'] = 0
else:
st.session_state['num_comments'] = len(df_filtered)
# Build filtered table figure
st.session_state["table_fig"] = comments_table(df_filtered,
['publishedAt', 'Comment_Formatted', 'Likes',
'Sentiment', 'Topic'],
{'publishedAt': 'Date', 'Comment_Formatted': 'Comment'})
# Build filtered wordcloud figure
st.session_state["wordcloud_fig"] = comment_wordcloud(df_filtered, mask, colors)
# Build filtered topic figure
st.session_state["topic_fig"] = topic_treemap(df_filtered, "Topic")
# Build filtered sentiment figure
st.session_state["sentiment_fig"] = sentiment_chart(df_filtered, "Sentiment")
st.session_state["figures_built"] = True
st.session_state.filter_state = "FILTERED"
# No filtering selected
else:
st.session_state['num_comments'] = len(yt_parser.df_comments)
# Can only build graphs if we have comments
if st.session_state['num_comments'] > 0:
try:
# Build unfiltered table figure
st.session_state["table_fig"] = comments_table(yt_parser.df_comments,
['publishedAt', 'Comment_Formatted', 'Likes',
'Sentiment', 'Topic'],
{'publishedAt': 'Date',
'Comment_Formatted': 'Comment'})
# Build unfiltered wordcloud figure
st.session_state["wordcloud_fig"] = comment_wordcloud(yt_parser.df_comments,
mask, colors)
# Build unfiltered topic figure
st.session_state["topic_fig"] = topic_treemap(yt_parser.df_comments, "Topic")
# Build unfiltered sentiment figure
st.session_state["sentiment_fig"] = sentiment_chart(yt_parser.df_comments, "Sentiment")
st.session_state["figures_built"] = True
except:
st.error("Error: Oops there's an issue on our end, please wait a moment and try again.")
st.stop()
with main_page:
if st.session_state.rerun_button == "QUERY COMPLETE":
st.subheader(f"{yt_parser.title}")
st.markdown("<hr><br>", unsafe_allow_html=True)
if st.session_state['num_comments'] > 0:
table_col, word_cloud_col = st.columns([0.55, 0.45])
with table_col:
st.markdown(f"""<p style='font-size: 1.3rem;
display: flex; align-items: center; justify-content: center;'><b>
Comments</b></p>""", unsafe_allow_html=True)
st.plotly_chart(st.session_state["table_fig"], use_container_width=True)
with word_cloud_col:
st.markdown(f"""<p style='font-size: 1.3rem;
display: flex; align-items: center; justify-content: center;'><b>
Word Cloud</b></p>""", unsafe_allow_html=True)
st.pyplot(st.session_state["wordcloud_fig"], use_container_width=True)
treemap_col, sentiment_donut_col = st.columns([0.55, 0.45])
with treemap_col:
st.markdown(f"""<p style='font-size: 1.3rem;
display: flex; align-items: center; justify-content: center;'><b>
Topic Proportions</b></p>""", unsafe_allow_html=True)
st.plotly_chart(st.session_state["topic_fig"], use_container_width=True)
with sentiment_donut_col:
st.markdown(f"""<p style='font-size: 1.3rem;
display: flex; align-items: center; justify-content: center;'><b>
Sentiment Distribution</b></p>""", unsafe_allow_html=True)
st.plotly_chart(st.session_state["sentiment_fig"], use_container_width=True)
# st.table(yt_parser.df_comments.head())
else:
st.write("Unfortunately we couldn't find any comments for this set of filters, please try "
"editing the filters and try again")
with st.sidebar:
# Define the HTML and CSS for the button-style container
if st.session_state['num_comments'] is not None:
num_comments = st.session_state['num_comments']
else:
num_comments = 0
htmlstr = f"""
<p style='background-color: rgb(255, 255, 255, 0.75);
color: rgb(0, 0, 0, 0.75);
font-size: 40px;
border-radius: 7px;
padding-top: 25px;
padding-bottom: 25px;
padding-right: 25px;
padding-left: 25px;
line-height:25px;
display: flex;
align-items: center;
justify-content: center;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);'>
{num_comments}</p>
"""
# Display the button-style container with number of comments
st.subheader("Number of comments")
st.markdown(htmlstr, unsafe_allow_html=True)
# Filters section
st.subheader("Filters")
if yt_parser.df_comments is not None:
st.session_state["topic_filter"] = st.multiselect("Topic",
options=sorted(list(yt_parser.df_comments['Topic'].unique())))
st.session_state["sentiment_filter"] = st.multiselect("Sentiment",
options=list(yt_parser.df_comments['Sentiment'].unique()))
st.session_state["semantic_filter"] = st.text_input("Keyword search",
max_chars=30)
st.button('Filter visualisations :sleuth_or_spy:', on_click=filter_visuals_button)
else:
st.multiselect("Topic",
options=["Please query comments from a video"],
disabled=True)
st.multiselect("Sentiment",
options=["Please query comments from a video"],
disabled=True)
st.text_input("Keyword search",
disabled=True)
st.button('Please query comments before filtering',
disabled=True) |