File size: 8,288 Bytes
5401755
9700fe3
 
 
aed7d5e
b001ab7
 
 
8144c2e
b001ab7
9700fe3
 
b001ab7
 
9700fe3
 
b001ab7
 
 
 
 
 
9700fe3
aed7d5e
 
78829de
aed7d5e
 
 
446384d
 
1992834
aed7d5e
 
 
 
b001ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9700fe3
b001ab7
 
9700fe3
 
b001ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9700fe3
b001ab7
 
 
 
 
9700fe3
b001ab7
 
 
 
9700fe3
b001ab7
9700fe3
 
 
b001ab7
 
 
9700fe3
b001ab7
 
 
9700fe3
b001ab7
 
 
9700fe3
b001ab7
 
 
 
 
 
 
 
 
 
9700fe3
b001ab7
9700fe3
 
b001ab7
 
 
 
 
 
 
5401755
 
 
b001ab7
5401755
 
 
 
b001ab7
9700fe3
b001ab7
 
5401755
aed7d5e
9700fe3
b001ab7
5401755
b001ab7
5401755
 
 
 
 
 
 
b001ab7
9700fe3
b001ab7
9700fe3
b001ab7
 
9700fe3
b001ab7
 
9700fe3
b001ab7
 
 
 
 
 
 
5401755
 
 
9700fe3
b001ab7
5401755
 
9700fe3
5401755
 
 
 
 
b001ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5401755
 
 
 
 
b001ab7
5401755
 
b001ab7
5401755
 
 
 
 
9700fe3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr
from datasets import load_dataset, Dataset
from collections import defaultdict
import random
import requests
import os
from langdetect import detect
import pandas as pd
from utils import *

# Load the source dataset
source_dataset = load_dataset("vietdata/eng_echo", split="train")
eng_texts = list(set(source_dataset["query"] + source_dataset["positive"] + source_dataset["negative"]))
vi_texts = []

# Initialize variables
envi_translations = []
vien_translations = []

trans2score = dict()
packages = [[0, "None", "None", 0, float('inf'), float("inf")]]
num = 1000

def authenticate(user_id):

    url = "https://intern-api.imtaedu.com/api/subnets/1/authenticate"
    headers = {
        "Content-Type": "application/json",
        "Accept": "application/json",
        "X-Public-Api-Key": os.environ['ADMIN']
        }
    payload = { "token": user_id }
    response = requests.post(url, json=payload, headers=headers)

    return response.status_code == 200

def send_score(user_id, score):
    max_retries = 10
    while max_retries > 0:
        url = "https://intern-api.imtaedu.com/api/subnets/1/grade"

        payload = {
            "token": user_id,
            "comment": "Good job!",
            "grade": score,
            "submitted_at": "2021-01-01 00:00:00",
            "graded_at": "2021-01-01 00:00:00"
        }
        headers = {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "X-Public-Api-Key": os.environ['ADMIN']
        }

        response = requests.post(url, json=payload, headers=headers)
        if response.status_code == 200:
            return True 
        print(response)
        max_retries -= 1
    return False

# Helper function to get the next text for translation
def get_next_en_text(user_id):
    next_text = random.choice(eng_texts)
    return next_text

def get_next_package(user_id):
    if len(packages) == 0:
        return None
    
    save = False
    count = 0
    for i in range(1, len(packages)):
        if count >= num:
            save_to_translated_echo()
            return packages[0]
        if packages[i][-2] > 0 :#and packages[i][0] != user_id:
            packages[0][-2] -= 1
            return packages[i]
        if packages[i][-2] == 0 and packages[i][-2] == packages[i][-1]:
            count += 1
    return packages[0]

# Function to handle translation submission
def submit_translation(user_id, package, vi_translation, en_text, en_translation, vi_text):
    assert vi_translation != ""
    if vi_translation != "" and detect(vi_translation) != "vi":
        gr.Warning("Bản dịch không phải tiếng Việt", duration=5)
        assert 4==5

    if en_translation != "" and detect(en_translation) != "en":
        print(en_translation, detect(en_translation))
        gr.Warning("Bản dịch không phải tiếng Anh", duration=5)
        assert 4==5

    first_score = gg_score(en_text, vi_translation, target="vi")



    second_score = miner_score(package[0][1], en_translation)
    ref_score = gg_score(package[0][2], en_translation, target="en")
    trust_score = 1 - abs(second_score - ref_score)/max((second_score+ref_score)/2, 0.1)

    packages.append([user_id, en_text, vi_translation, first_score*trust_score*0.5, 10, 10])
    package[0][3] += second_score*trust_score*0.05
    package[0][-1] -= 1

    assert send_score(user_id, first_score*trust_score*0.5)
    if package[0][0] != 0:
        assert send_score(package[0][0], second_score*trust_score*0.05)

# Function to save completed translations to 'translated_echo'
def save_to_translated_echo():
    try: 
        old_dataset = load_dataset("vietdata/translated_echo", split="train")
        old_dataset = old_dataset.to_pandas()
    except:
        old_dataset = pd.DataFrame([], columns=["user_id", "source", "target", "score"])
    
    new_dataset = pd.DataFrame([i[:4] for i in packages[:num]], columns=["user_id", "source", "target", "score"])
    new_dataset = pd.concat([old_dataset, new_dataset])
    # Append to Hugging Face dataset (dummy function call)
    translated_dataset = Dataset.from_pandas(new_dataset)
    translated_dataset.push_to_hub("vietdata/translated_echo", split="train")

    del new_dataset
    del old_dataset
    del translated_dataset
    import gc
    gc.collect()
    for i in range(num):
        packages.pop(1)


# Sample English text to translate
english_text = None

# User session dictionary to store logged-in status
user_sessions = {}

def login(username, state, package):
    state[0] = username
    package[0] = get_next_package(user_id=username)

    # Authenticate user
    if authenticate(username):
        #user_sessions[username] = True
        return f"Welcome, {username}!", gr.update(visible=False), gr.update(visible=True), get_next_en_text(username), package[0][2]
    else:
        return "Invalid username or password.", gr.update(visible=True), gr.update(visible=False), "", ""

def logout(username):
    # Log out user and reset session
    if username in user_sessions:
        del user_sessions[username]
    return "Logged out. Please log in again.", gr.update(visible=True), gr.update(visible=False)

def press_submit_translation( state, package, vi_translation, en_input, en_translation, vi_input):
    try:
        submit_translation(state[0], package, vi_translation, en_input, en_translation, vi_input)
        # Save the translation and provide feedback
        gr.Info("Submitted Succesfully")
        
    except Exception as e:
        import traceback
        print(traceback.format_exc())
        print(e)
        return "Error please try submit again!", en_input, vi_input, "", ""

    try:
        package[0] = get_next_package(user_id=state[0])
        return f"""Submitted Succesfully""", get_next_en_text(state[0]), package[0][2], "", ""
    except:
        return "Failed to load new job, please reload page!", en_input, vi_input, "", ""

# Define the Gradio interface
with gr.Blocks() as demo:
    state = gr.State([None])
    package = gr.State([None])
    # Login section
    with gr.Column(visible=True) as login_section:
        username_input = gr.Textbox(placeholder="Enter your token", label="Token ID")
        login_button = gr.Button("Login")
        login_output = gr.Textbox(label="Login Status", interactive=False)

    # Translation section (initially hidden)
    with gr.Column(visible=False) as translation_section:
        with gr.Column() as en2vi:
            gr.Markdown("### Dịch từ tiếng Anh sang tiếng Việt")
            en_input = gr.Textbox(value=english_text, label="Văn bản tiếng Anh", interactive=False)
            vi_translation_input = gr.Textbox(placeholder="Nhập bản dịch", label="Nhập bản dịch tiếng Việt")

        with gr.Column() as en2vi:
            gr.Markdown("### Dịch từ tiếng Việt sang tiếng Anh")
            vi_input = gr.Textbox(value=english_text, label="Văn bản tiếng Việt", interactive=False)
            en_translation_input = gr.Textbox(placeholder="Nhập bản dịch", label="Nhập bản dịch tiếng Anh")

        # gr.Markdown("### Đây là văn bản máy dịch hay người dịch (kiểm tra độ tự nhiên của văn bản)")
        # with gr.Row():
        #     eval_document = gr.Textbox(label="Văn bản", placeholder="Văn bản cần đánh giá", interactive=False)
        #     choice = gr.Radio(["Human-Written", "Machine-Translated"], label="How would you classify this response?")

        submit_button = gr.Button("Submit")
        translation_output = gr.Textbox(label="Submission Status", interactive=False)
        logout_button = gr.Button("Logout")

    # Button functions
    login_button.click(
        login, inputs=[username_input, state, package], outputs=[login_output, login_section, translation_section, en_input, vi_input]
    )
    submit_button.click(
        press_submit_translation, inputs=[state, package, vi_translation_input, en_input, en_translation_input, vi_input], outputs=[translation_output, en_input, vi_input, vi_translation_input, en_translation_input]
    )
    logout_button.click(
        logout, inputs=[username_input], outputs=[login_output, login_section, translation_section]
    )

demo.launch(debug=True)