File size: 3,989 Bytes
742d952
 
 
 
 
cf1cb9e
 
742d952
 
 
 
cf1cb9e
742d952
 
42d4d05
742d952
 
 
cf1cb9e
742d952
 
 
 
cf1cb9e
742d952
 
 
 
cf1cb9e
 
 
 
 
742d952
 
 
 
 
 
 
 
 
 
 
 
cf1cb9e
42d4d05
742d952
 
 
cf1cb9e
742d952
cf1cb9e
42d4d05
742d952
 
 
42d4d05
cf1cb9e
42d4d05
742d952
42d4d05
742d952
 
42d4d05
 
 
 
cf1cb9e
42d4d05
 
 
 
 
 
 
 
 
 
 
 
742d952
 
42d4d05
cf1cb9e
42d4d05
 
 
742d952
cf1cb9e
42d4d05
 
cf1cb9e
42d4d05
 
cf1cb9e
42d4d05
 
cf1cb9e
 
 
 
 
 
42d4d05
 
 
742d952
 
cf1cb9e
42d4d05
cf1cb9e
42d4d05
742d952
42d4d05
cf1cb9e
 
 
42d4d05
cf1cb9e
742d952
cf1cb9e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import os

import cv2
import torch
import numpy as np
from PIL import Image
from insightface.app import FaceAnalysis
import face_align

faceAnalysis = FaceAnalysis(name='buffalo_l')
faceAnalysis.prepare(ctx_id=-1, det_size=(512, 512))

from StyleTransferModel_128 import StyleTransferModel
import gradio as gr

def parse_arguments():
    parser = argparse.ArgumentParser(description='Process command line arguments')
    parser.add_argument('--resolution', type=int, default=128, help='Resolution') #Removed model path

    return parser.parse_args()

def get_device():
    return torch.device('cpu')

def load_model(model_path):
    device = get_device()
    model = StyleTransferModel().to(device)
    try:
        model.load_state_dict(torch.load(model_path, map_location=device), strict=False)
    except FileNotFoundError:
        print(f"Error: Model file not found at {model_path}")
        return None
    model.eval()
    return model

def swap_face(model, target_face, source_face_latent):
    device = get_device()

    target_tensor = torch.from_numpy(target_face).to(device)
    source_tensor = torch.from_numpy(source_face_latent).to(device)

    with torch.no_grad():
        swapped_tensor = model(target_tensor, source_tensor)
    
    swapped_face = postprocess_face(swapped_tensor)

    return swapped_face, swapped_tensor

def create_target(target_image, resolution):
    target_face = faceAnalysis.get(np.array(target_image))[0]

    aligned_target_face, M = face_align.norm_crop2(np.array(target_image), target_face.kps, resolution)
    target_face_blob = getBlob(aligned_target_face, (resolution, resolution))

    return target_face_blob, M

def create_source(source_image):
    source_face = faceAnalysis.get(np.array(source_image))[0]
    source_latent = getLatent(source_face)

    return source_latent


def postprocess_face(swapped_tensor):
    swapped_tensor = swapped_tensor.cpu().numpy()
    swapped_tensor = np.transpose(swapped_tensor, (0, 2, 3, 1))
    swapped_tensor = (swapped_tensor * 255).astype(np.uint8)
    swapped_face = Image.fromarray(swapped_tensor[0])
    return swapped_face

def getBlob(aligned_face, size):
    aligned_face = cv2.resize(aligned_face, size)
    aligned_face = aligned_face / 255.0
    aligned_face = np.transpose(aligned_face, (2, 0, 1))
    aligned_face = np.expand_dims(aligned_face, axis=0)
    aligned_face = torch.from_numpy(aligned_face).float()
    return aligned_face

def getLatent(source_face):
    return source_face.embedding


def blend_swapped_image(swapped_face, target_img, M):
    swapped_face = np.array(swapped_face)
    swapped_face = cv2.warpAffine(swapped_face, M, (target_img.shape[1], target_img.shape[0]))
    mask = np.ones_like(swapped_face) * 255
    mask = cv2.warpAffine(mask, M, (target_img.shape[1], target_img.shape[0]))

    target_img = np.array(target_img)
    swapped_face = Image.blend(Image.fromarray(target_img), Image.fromarray(swapped_face), Image.fromarray(mask).convert("L"))

    return np.array(swapped_face)


def process_images(target_image, source_image):
    args = parse_arguments()
    args.resolution = 128

    model_path = "reswapper-429500.pth" # Hardcoded model path

    model = load_model(model_path)
    if model is None:
        return "Error: Could not load the model. Check the path."

    target_face_blob, M = create_target(target_image, args.resolution)
    source_latent = create_source(source_image)
    swapped_face, _ = swap_face(model, target_face_blob, source_latent)

    swapped_face = blend_swapped_image(swapped_face, target_image, M)

    return Image.fromarray(swapped_face)


with gr.Blocks() as demo:
    target_image = gr.Image(label="Target Image", type="pil")
    source_image = gr.Image(label="Source Image", type="pil")
    output_image = gr.Image(label="Output Image", type="pil")
    btn = gr.Button("Swap Face")
    btn.click(fn=process_images, inputs=[target_image, source_image], outputs=output_image)

demo.launch()