File size: 29,757 Bytes
160d3b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
""" AutoAugment, RandAugment, and AugMix for PyTorch

This code implements the searched ImageNet policies with various tweaks and improvements and
does not include any of the search code.

AA and RA Implementation adapted from:
    https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/autoaugment.py

AugMix adapted from:
    https://github.com/google-research/augmix

Papers:
    AutoAugment: Learning Augmentation Policies from Data - https://arxiv.org/abs/1805.09501
    Learning Data Augmentation Strategies for Object Detection - https://arxiv.org/abs/1906.11172
    RandAugment: Practical automated data augmentation... - https://arxiv.org/abs/1909.13719
    AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - https://arxiv.org/abs/1912.02781

Hacked together by / Copyright 2020 Ross Wightman
"""
import random
import math
import re
from PIL import Image, ImageOps, ImageEnhance, ImageChops
import PIL
import numpy as np


_PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]])

_FILL = (128, 128, 128)

# This signifies the max integer that the controller RNN could predict for the
# augmentation scheme.
_MAX_LEVEL = 10.

_HPARAMS_DEFAULT = dict(
    translate_const=250,
    img_mean=_FILL,
)

_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)


def _interpolation(kwargs):
    interpolation = kwargs.pop('resample', Image.BILINEAR)
    if isinstance(interpolation, (list, tuple)):
        return random.choice(interpolation)
    else:
        return interpolation


def _check_args_tf(kwargs):
    if 'fillcolor' in kwargs and _PIL_VER < (5, 0):
        kwargs.pop('fillcolor')
    kwargs['resample'] = _interpolation(kwargs)


def shear_x(img, factor, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0), **kwargs)


def shear_y(img, factor, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0), **kwargs)


def translate_x_rel(img, pct, **kwargs):
    pixels = pct * img.size[0]
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)


def translate_y_rel(img, pct, **kwargs):
    pixels = pct * img.size[1]
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)


def translate_x_abs(img, pixels, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0), **kwargs)


def translate_y_abs(img, pixels, **kwargs):
    _check_args_tf(kwargs)
    return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels), **kwargs)


def rotate(img, degrees, **kwargs):
    _check_args_tf(kwargs)
    if _PIL_VER >= (5, 2):
        return img.rotate(degrees, **kwargs)
    elif _PIL_VER >= (5, 0):
        w, h = img.size
        post_trans = (0, 0)
        rotn_center = (w / 2.0, h / 2.0)
        angle = -math.radians(degrees)
        matrix = [
            round(math.cos(angle), 15),
            round(math.sin(angle), 15),
            0.0,
            round(-math.sin(angle), 15),
            round(math.cos(angle), 15),
            0.0,
        ]

        def transform(x, y, matrix):
            (a, b, c, d, e, f) = matrix
            return a * x + b * y + c, d * x + e * y + f

        matrix[2], matrix[5] = transform(
            -rotn_center[0] - post_trans[0], -rotn_center[1] - post_trans[1], matrix
        )
        matrix[2] += rotn_center[0]
        matrix[5] += rotn_center[1]
        return img.transform(img.size, Image.AFFINE, matrix, **kwargs)
    else:
        return img.rotate(degrees, resample=kwargs['resample'])


def auto_contrast(img, **__):
    return ImageOps.autocontrast(img)


def invert(img, **__):
    return ImageOps.invert(img)


def equalize(img, **__):
    return ImageOps.equalize(img)


def solarize(img, thresh, **__):
    return ImageOps.solarize(img, thresh)


def solarize_add(img, add, thresh=128, **__):
    lut = []
    for i in range(256):
        if i < thresh:
            lut.append(min(255, i + add))
        else:
            lut.append(i)
    if img.mode in ("L", "RGB"):
        if img.mode == "RGB" and len(lut) == 256:
            lut = lut + lut + lut
        return img.point(lut)
    else:
        return img


def posterize(img, bits_to_keep, **__):
    if bits_to_keep >= 8:
        return img
    return ImageOps.posterize(img, bits_to_keep)


def contrast(img, factor, **__):
    return ImageEnhance.Contrast(img).enhance(factor)


def color(img, factor, **__):
    return ImageEnhance.Color(img).enhance(factor)


def brightness(img, factor, **__):
    return ImageEnhance.Brightness(img).enhance(factor)


def sharpness(img, factor, **__):
    return ImageEnhance.Sharpness(img).enhance(factor)


def _randomly_negate(v):
    """With 50% prob, negate the value"""
    return -v if random.random() > 0.5 else v


def _rotate_level_to_arg(level, _hparams):
    # range [-30, 30]
    level = (level / _MAX_LEVEL) * 30.
    level = _randomly_negate(level)
    return level,


def _enhance_level_to_arg(level, _hparams):
    # range [0.1, 1.9]
    return (level / _MAX_LEVEL) * 1.8 + 0.1,


def _enhance_increasing_level_to_arg(level, _hparams):
    # the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend
    # range [0.1, 1.9]
    level = (level / _MAX_LEVEL) * .9
    level = 1.0 + _randomly_negate(level)
    return level,


def _shear_level_to_arg(level, _hparams):
    # range [-0.3, 0.3]
    level = (level / _MAX_LEVEL) * 0.3
    level = _randomly_negate(level)
    return level,


def _translate_abs_level_to_arg(level, hparams):
    translate_const = hparams['translate_const']
    level = (level / _MAX_LEVEL) * float(translate_const)
    level = _randomly_negate(level)
    return level,


def _translate_rel_level_to_arg(level, hparams):
    # default range [-0.45, 0.45]
    translate_pct = hparams.get('translate_pct', 0.45)
    level = (level / _MAX_LEVEL) * translate_pct
    level = _randomly_negate(level)
    return level,


def _posterize_level_to_arg(level, _hparams):
    # As per Tensorflow TPU EfficientNet impl
    # range [0, 4], 'keep 0 up to 4 MSB of original image'
    # intensity/severity of augmentation decreases with level
    return int((level / _MAX_LEVEL) * 4),


def _posterize_increasing_level_to_arg(level, hparams):
    # As per Tensorflow models research and UDA impl
    # range [4, 0], 'keep 4 down to 0 MSB of original image',
    # intensity/severity of augmentation increases with level
    return 4 - _posterize_level_to_arg(level, hparams)[0],


def _posterize_original_level_to_arg(level, _hparams):
    # As per original AutoAugment paper description
    # range [4, 8], 'keep 4 up to 8 MSB of image'
    # intensity/severity of augmentation decreases with level
    return int((level / _MAX_LEVEL) * 4) + 4,


def _solarize_level_to_arg(level, _hparams):
    # range [0, 256]
    # intensity/severity of augmentation decreases with level
    return int((level / _MAX_LEVEL) * 256),


def _solarize_increasing_level_to_arg(level, _hparams):
    # range [0, 256]
    # intensity/severity of augmentation increases with level
    return 256 - _solarize_level_to_arg(level, _hparams)[0],


def _solarize_add_level_to_arg(level, _hparams):
    # range [0, 110]
    return int((level / _MAX_LEVEL) * 110),


LEVEL_TO_ARG = {
    'AutoContrast': None,
    'Equalize': None,
    'Invert': None,
    'Rotate': _rotate_level_to_arg,
    # There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers
    'Posterize': _posterize_level_to_arg,
    'PosterizeIncreasing': _posterize_increasing_level_to_arg,
    'PosterizeOriginal': _posterize_original_level_to_arg,
    'Solarize': _solarize_level_to_arg,
    'SolarizeIncreasing': _solarize_increasing_level_to_arg,
    'SolarizeAdd': _solarize_add_level_to_arg,
    'Color': _enhance_level_to_arg,
    'ColorIncreasing': _enhance_increasing_level_to_arg,
    'Contrast': _enhance_level_to_arg,
    'ContrastIncreasing': _enhance_increasing_level_to_arg,
    'Brightness': _enhance_level_to_arg,
    'BrightnessIncreasing': _enhance_increasing_level_to_arg,
    'Sharpness': _enhance_level_to_arg,
    'SharpnessIncreasing': _enhance_increasing_level_to_arg,
    'ShearX': _shear_level_to_arg,
    'ShearY': _shear_level_to_arg,
    'TranslateX': _translate_abs_level_to_arg,
    'TranslateY': _translate_abs_level_to_arg,
    'TranslateXRel': _translate_rel_level_to_arg,
    'TranslateYRel': _translate_rel_level_to_arg,
}


NAME_TO_OP = {
    'AutoContrast': auto_contrast,
    'Equalize': equalize,
    'Invert': invert,
    'Rotate': rotate,
    'Posterize': posterize,
    'PosterizeIncreasing': posterize,
    'PosterizeOriginal': posterize,
    'Solarize': solarize,
    'SolarizeIncreasing': solarize,
    'SolarizeAdd': solarize_add,
    'Color': color,
    'ColorIncreasing': color,
    'Contrast': contrast,
    'ContrastIncreasing': contrast,
    'Brightness': brightness,
    'BrightnessIncreasing': brightness,
    'Sharpness': sharpness,
    'SharpnessIncreasing': sharpness,
    'ShearX': shear_x,
    'ShearY': shear_y,
    'TranslateX': translate_x_abs,
    'TranslateY': translate_y_abs,
    'TranslateXRel': translate_x_rel,
    'TranslateYRel': translate_y_rel,
}


class AugmentOp:

    def __init__(self, name, prob=0.5, magnitude=10, hparams=None):
        hparams = hparams or _HPARAMS_DEFAULT
        self.aug_fn = NAME_TO_OP[name]
        self.level_fn = LEVEL_TO_ARG[name]
        self.prob = prob
        self.magnitude = magnitude
        self.hparams = hparams.copy()
        self.kwargs = dict(
            fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL,
            resample=hparams['interpolation'] if 'interpolation' in hparams else _RANDOM_INTERPOLATION,
        )

        # If magnitude_std is > 0, we introduce some randomness
        # in the usually fixed policy and sample magnitude from a normal distribution
        # with mean `magnitude` and std-dev of `magnitude_std`.
        # NOTE This is my own hack, being tested, not in papers or reference impls.
        # If magnitude_std is inf, we sample magnitude from a uniform distribution
        self.magnitude_std = self.hparams.get('magnitude_std', 0)

    def __call__(self, img):
        if self.prob < 1.0 and random.random() > self.prob:
            return img
        magnitude = self.magnitude
        if self.magnitude_std:
            if self.magnitude_std == float('inf'):
                magnitude = random.uniform(0, magnitude)
            elif self.magnitude_std > 0:
                magnitude = random.gauss(magnitude, self.magnitude_std)
        magnitude = min(_MAX_LEVEL, max(0, magnitude))  # clip to valid range
        level_args = self.level_fn(magnitude, self.hparams) if self.level_fn is not None else tuple()
        return self.aug_fn(img, *level_args, **self.kwargs)


def auto_augment_policy_v0(hparams):
    # ImageNet v0 policy from TPU EfficientNet impl, cannot find a paper reference.
    policy = [
        [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
        [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
        [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
        [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
        [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
        [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
        [('Posterize', 0.8, 2), ('Solarize', 0.6, 10)],  # This results in black image with Tpu posterize
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
        [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy_v0r(hparams):
    # ImageNet v0 policy from TPU EfficientNet impl, with variation of Posterize used
    # in Google research implementation (number of bits discarded increases with magnitude)
    policy = [
        [('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
        [('Color', 0.4, 9), ('Equalize', 0.6, 3)],
        [('Color', 0.4, 1), ('Rotate', 0.6, 8)],
        [('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
        [('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
        [('Color', 0.2, 0), ('Equalize', 0.8, 8)],
        [('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
        [('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
        [('Color', 0.6, 1), ('Equalize', 1.0, 2)],
        [('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
        [('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
        [('Color', 0.4, 7), ('Equalize', 0.6, 0)],
        [('PosterizeIncreasing', 0.4, 6), ('AutoContrast', 0.4, 7)],
        [('Solarize', 0.6, 8), ('Color', 0.6, 9)],
        [('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
        [('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
        [('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
        [('ShearY', 0.8, 0), ('Color', 0.6, 4)],
        [('Color', 1.0, 0), ('Rotate', 0.6, 2)],
        [('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
        [('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
        [('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
        [('PosterizeIncreasing', 0.8, 2), ('Solarize', 0.6, 10)],
        [('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
        [('Color', 0.8, 6), ('Rotate', 0.4, 5)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy_original(hparams):
    # ImageNet policy from https://arxiv.org/abs/1805.09501
    policy = [
        [('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
        [('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
        [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
        [('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)],
        [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
        [('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)],
        [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
        [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
        [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
        [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
        [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
        [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
        [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy_originalr(hparams):
    # ImageNet policy from https://arxiv.org/abs/1805.09501 with research posterize variation
    policy = [
        [('PosterizeIncreasing', 0.4, 8), ('Rotate', 0.6, 9)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
        [('PosterizeIncreasing', 0.6, 7), ('PosterizeIncreasing', 0.6, 6)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
        [('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
        [('PosterizeIncreasing', 0.8, 5), ('Equalize', 1.0, 2)],
        [('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
        [('Equalize', 0.6, 8), ('PosterizeIncreasing', 0.4, 6)],
        [('Rotate', 0.8, 8), ('Color', 0.4, 0)],
        [('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
        [('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Rotate', 0.8, 8), ('Color', 1.0, 2)],
        [('Color', 0.8, 8), ('Solarize', 0.8, 7)],
        [('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
        [('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
        [('Color', 0.4, 0), ('Equalize', 0.6, 3)],
        [('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
        [('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
        [('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
        [('Color', 0.6, 4), ('Contrast', 1.0, 8)],
        [('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
    ]
    pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
    return pc


def auto_augment_policy(name='v0', hparams=None):
    hparams = hparams or _HPARAMS_DEFAULT
    if name == 'original':
        return auto_augment_policy_original(hparams)
    elif name == 'originalr':
        return auto_augment_policy_originalr(hparams)
    elif name == 'v0':
        return auto_augment_policy_v0(hparams)
    elif name == 'v0r':
        return auto_augment_policy_v0r(hparams)
    else:
        assert False, 'Unknown AA policy (%s)' % name


class AutoAugment:

    def __init__(self, policy):
        self.policy = policy

    def __call__(self, img):
        sub_policy = random.choice(self.policy)
        for op in sub_policy:
            img = op(img)
        return img


def auto_augment_transform(config_str, hparams):
    """
    Create a AutoAugment transform

    :param config_str: String defining configuration of auto augmentation. Consists of multiple sections separated by
    dashes ('-'). The first section defines the AutoAugment policy (one of 'v0', 'v0r', 'original', 'originalr').
    The remaining sections, not order sepecific determine
        'mstd' -  float std deviation of magnitude noise applied
    Ex 'original-mstd0.5' results in AutoAugment with original policy, magnitude_std 0.5

    :param hparams: Other hparams (kwargs) for the AutoAugmentation scheme

    :return: A PyTorch compatible Transform
    """
    config = config_str.split('-')
    policy_name = config[0]
    config = config[1:]
    for c in config:
        cs = re.split(r'(\d.*)', c)
        if len(cs) < 2:
            continue
        key, val = cs[:2]
        if key == 'mstd':
            # noise param injected via hparams for now
            hparams.setdefault('magnitude_std', float(val))
        else:
            assert False, 'Unknown AutoAugment config section'
    aa_policy = auto_augment_policy(policy_name, hparams=hparams)
    return AutoAugment(aa_policy)


_RAND_TRANSFORMS = [
    'AutoContrast',
    'Equalize',
    'Invert',
    'Rotate',
    'Posterize',
    'Solarize',
    'SolarizeAdd',
    'Color',
    'Contrast',
    'Brightness',
    'Sharpness',
    'ShearX',
    'ShearY',
    'TranslateXRel',
    'TranslateYRel',
    #'Cutout'  # NOTE I've implement this as random erasing separately
]


_RAND_INCREASING_TRANSFORMS = [
    'AutoContrast',
    'Equalize',
    'Invert',
    'Rotate',
    'PosterizeIncreasing',
    'SolarizeIncreasing',
    'SolarizeAdd',
    'ColorIncreasing',
    'ContrastIncreasing',
    'BrightnessIncreasing',
    'SharpnessIncreasing',
    'ShearX',
    'ShearY',
    'TranslateXRel',
    'TranslateYRel',
    #'Cutout'  # NOTE I've implement this as random erasing separately
]



# These experimental weights are based loosely on the relative improvements mentioned in paper.
# They may not result in increased performance, but could likely be tuned to so.
_RAND_CHOICE_WEIGHTS_0 = {
    'Rotate': 0.3,
    'ShearX': 0.2,
    'ShearY': 0.2,
    'TranslateXRel': 0.1,
    'TranslateYRel': 0.1,
    'Color': .025,
    'Sharpness': 0.025,
    'AutoContrast': 0.025,
    'Solarize': .005,
    'SolarizeAdd': .005,
    'Contrast': .005,
    'Brightness': .005,
    'Equalize': .005,
    'Posterize': 0,
    'Invert': 0,
}


def _select_rand_weights(weight_idx=0, transforms=None):
    transforms = transforms or _RAND_TRANSFORMS
    assert weight_idx == 0  # only one set of weights currently
    rand_weights = _RAND_CHOICE_WEIGHTS_0
    probs = [rand_weights[k] for k in transforms]
    probs /= np.sum(probs)
    return probs


def rand_augment_ops(magnitude=10, hparams=None, transforms=None):
    hparams = hparams or _HPARAMS_DEFAULT
    transforms = transforms or _RAND_TRANSFORMS
    return [AugmentOp(
        name, prob=0.5, magnitude=magnitude, hparams=hparams) for name in transforms]


class RandAugment:
    def __init__(self, ops, num_layers=2, choice_weights=None):
        self.ops = ops
        self.num_layers = num_layers
        self.choice_weights = choice_weights

    def __call__(self, img):
        # no replacement when using weighted choice
        ops = np.random.choice(
            self.ops, self.num_layers, replace=self.choice_weights is None, p=self.choice_weights)
        for op in ops:
            img = op(img)
        return img


def rand_augment_transform(config_str, hparams):
    """
    Create a RandAugment transform

    :param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
    dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
    sections, not order sepecific determine
        'm' - integer magnitude of rand augment
        'n' - integer num layers (number of transform ops selected per image)
        'w' - integer probabiliy weight index (index of a set of weights to influence choice of op)
        'mstd' -  float std deviation of magnitude noise applied
        'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0)
    Ex 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5
    'rand-mstd1-w0' results in magnitude_std 1.0, weights 0, default magnitude of 10 and num_layers 2

    :param hparams: Other hparams (kwargs) for the RandAugmentation scheme

    :return: A PyTorch compatible Transform
    """
    magnitude = _MAX_LEVEL  # default to _MAX_LEVEL for magnitude (currently 10)
    num_layers = 2  # default to 2 ops per image
    weight_idx = None  # default to no probability weights for op choice
    transforms = _RAND_TRANSFORMS
    config = config_str.split('-')
    assert config[0] == 'rand'
    config = config[1:]
    for c in config:
        cs = re.split(r'(\d.*)', c)
        if len(cs) < 2:
            continue
        key, val = cs[:2]
        if key == 'mstd':
            # noise param injected via hparams for now
            hparams.setdefault('magnitude_std', float(val))
        elif key == 'inc':
            if bool(val):
                transforms = _RAND_INCREASING_TRANSFORMS
        elif key == 'm':
            magnitude = int(val)
        elif key == 'n':
            num_layers = int(val)
        elif key == 'w':
            weight_idx = int(val)
        else:
            assert False, 'Unknown RandAugment config section'
    ra_ops = rand_augment_ops(magnitude=magnitude, hparams=hparams, transforms=transforms)
    choice_weights = None if weight_idx is None else _select_rand_weights(weight_idx)
    return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)


_AUGMIX_TRANSFORMS = [
    'AutoContrast',
    'ColorIncreasing',  # not in paper
    'ContrastIncreasing',  # not in paper
    'BrightnessIncreasing',  # not in paper
    'SharpnessIncreasing',  # not in paper
    'Equalize',
    'Rotate',
    'PosterizeIncreasing',
    'SolarizeIncreasing',
    'ShearX',
    'ShearY',
    'TranslateXRel',
    'TranslateYRel',
]


def augmix_ops(magnitude=10, hparams=None, transforms=None):
    hparams = hparams or _HPARAMS_DEFAULT
    transforms = transforms or _AUGMIX_TRANSFORMS
    return [AugmentOp(
        name, prob=1.0, magnitude=magnitude, hparams=hparams) for name in transforms]


class AugMixAugment:
    """ AugMix Transform
    Adapted and improved from impl here: https://github.com/google-research/augmix/blob/master/imagenet.py
    From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty -
    https://arxiv.org/abs/1912.02781
    """
    def __init__(self, ops, alpha=1., width=3, depth=-1, blended=False):
        self.ops = ops
        self.alpha = alpha
        self.width = width
        self.depth = depth
        self.blended = blended  # blended mode is faster but not well tested

    def _calc_blended_weights(self, ws, m):
        ws = ws * m
        cump = 1.
        rws = []
        for w in ws[::-1]:
            alpha = w / cump
            cump *= (1 - alpha)
            rws.append(alpha)
        return np.array(rws[::-1], dtype=np.float32)

    def _apply_blended(self, img, mixing_weights, m):
        # This is my first crack and implementing a slightly faster mixed augmentation. Instead
        # of accumulating the mix for each chain in a Numpy array and then blending with original,
        # it recomputes the blending coefficients and applies one PIL image blend per chain.
        # TODO the results appear in the right ballpark but they differ by more than rounding.
        img_orig = img.copy()
        ws = self._calc_blended_weights(mixing_weights, m)
        for w in ws:
            depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
            ops = np.random.choice(self.ops, depth, replace=True)
            img_aug = img_orig  # no ops are in-place, deep copy not necessary
            for op in ops:
                img_aug = op(img_aug)
            img = Image.blend(img, img_aug, w)
        return img

    def _apply_basic(self, img, mixing_weights, m):
        # This is a literal adaptation of the paper/official implementation without normalizations and
        # PIL <-> Numpy conversions between every op. It is still quite CPU compute heavy compared to the
        # typical augmentation transforms, could use a GPU / Kornia implementation.
        img_shape = img.size[0], img.size[1], len(img.getbands())
        mixed = np.zeros(img_shape, dtype=np.float32)
        for mw in mixing_weights:
            depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
            ops = np.random.choice(self.ops, depth, replace=True)
            img_aug = img  # no ops are in-place, deep copy not necessary
            for op in ops:
                img_aug = op(img_aug)
            mixed += mw * np.asarray(img_aug, dtype=np.float32)
        np.clip(mixed, 0, 255., out=mixed)
        mixed = Image.fromarray(mixed.astype(np.uint8))
        return Image.blend(img, mixed, m)

    def __call__(self, img):
        mixing_weights = np.float32(np.random.dirichlet([self.alpha] * self.width))
        m = np.float32(np.random.beta(self.alpha, self.alpha))
        if self.blended:
            mixed = self._apply_blended(img, mixing_weights, m)
        else:
            mixed = self._apply_basic(img, mixing_weights, m)
        return mixed


def augment_and_mix_transform(config_str, hparams):
    """ Create AugMix PyTorch transform

    :param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
    dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
    sections, not order sepecific determine
        'm' - integer magnitude (severity) of augmentation mix (default: 3)
        'w' - integer width of augmentation chain (default: 3)
        'd' - integer depth of augmentation chain (-1 is random [1, 3], default: -1)
        'b' - integer (bool), blend each branch of chain into end result without a final blend, less CPU (default: 0)
        'mstd' -  float std deviation of magnitude noise applied (default: 0)
    Ex 'augmix-m5-w4-d2' results in AugMix with severity 5, chain width 4, chain depth 2

    :param hparams: Other hparams (kwargs) for the Augmentation transforms

    :return: A PyTorch compatible Transform
    """
    magnitude = 3
    width = 3
    depth = -1
    alpha = 1.
    blended = False
    hparams['magnitude_std'] = float('inf')
    config = config_str.split('-')
    assert config[0] == 'augmix'
    config = config[1:]
    for c in config:
        cs = re.split(r'(\d.*)', c)
        if len(cs) < 2:
            continue
        key, val = cs[:2]
        if key == 'mstd':
            # noise param injected via hparams for now
            hparams.setdefault('magnitude_std', float(val))
        elif key == 'm':
            magnitude = int(val)
        elif key == 'w':
            width = int(val)
        elif key == 'd':
            depth = int(val)
        elif key == 'a':
            alpha = float(val)
        elif key == 'b':
            blended = bool(val)
        else:
            assert False, 'Unknown AugMix config section'
    ops = augmix_ops(magnitude=magnitude, hparams=hparams)
    return AugMixAugment(ops, alpha=alpha, width=width, depth=depth, blended=blended)