File size: 10,269 Bytes
5e4b316
 
 
 
 
 
 
 
 
eb83dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
411819d
eb83dcd
 
 
 
5e4b316
 
 
eb83dcd
 
5e4b316
 
 
 
 
eb83dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b186d7
 
 
 
 
eb83dcd
 
 
 
 
 
 
e1adc1c
eb83dcd
411819d
eb83dcd
 
 
 
 
 
 
 
 
 
 
 
e1adc1c
 
 
 
eb83dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba9b1d
eb83dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba9b1d
eb83dcd
 
 
 
 
 
 
7ba9b1d
411819d
 
 
 
 
 
 
 
 
eb83dcd
aab4898
f8c4838
eb83dcd
 
 
 
 
 
 
 
 
 
 
 
 
7ba9b1d
eb83dcd
 
411819d
eb83dcd
2a8e1b5
eb83dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ba9b1d
f8c4838
 
 
5e4b316
 
 
 
 
 
 
 
 
eb83dcd
5e4b316
 
 
 
 
 
 
 
 
 
 
 
 
 
fe53ad3
5e4b316
e281db3
7ba9b1d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""A simple web interactive chat demo based on gradio."""

import os
import time
import gradio as gr
import numpy as np
import spaces
import torch

import os
import lightning as L
import torch
import time
import spaces
from snac import SNAC
from litgpt import Tokenizer
from litgpt.utils import (
    num_parameters,
)
from litgpt.generate.base import (
    generate_AA,
    generate_ASR,
    generate_TA,
    generate_TT,
    generate_AT,
    generate_TA_BATCH,
)
from typing import Any, Literal, Optional
import soundfile as sf
from litgpt.model import GPT, Config
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from utils.snac_utils import layershift, reconscruct_snac, reconstruct_tensors, get_time_str
from utils.snac_utils import get_snac
import whisper
from tqdm import tqdm
from huggingface_hub import snapshot_download
from litgpt.generate.base import sample


device = "cuda" if torch.cuda.is_available() else "cpu"
ckpt_dir = "./checkpoint"


OUT_CHUNK = 4096
OUT_RATE = 24000
OUT_CHANNELS = 1

# TODO
text_vocabsize = 151936
text_specialtokens = 64
audio_vocabsize = 4096
audio_specialtokens = 64

padded_text_vocabsize = text_vocabsize + text_specialtokens
padded_audio_vocabsize = audio_vocabsize + audio_specialtokens

_eot = text_vocabsize
_pad_t = text_vocabsize + 1
_input_t = text_vocabsize + 2
_answer_t = text_vocabsize + 3
_asr = text_vocabsize + 4

_eoa = audio_vocabsize
_pad_a = audio_vocabsize + 1
_input_a = audio_vocabsize + 2
_answer_a = audio_vocabsize + 3
_split = audio_vocabsize + 4


def download_model(ckpt_dir):
    repo_id = "gpt-omni/mini-omni"
    snapshot_download(repo_id, local_dir=ckpt_dir, revision="main")


if not os.path.exists(ckpt_dir):
    print(f"checkpoint directory {ckpt_dir} not found, downloading from huggingface")
    download_model(ckpt_dir)


snacmodel = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").eval().to(device)
whispermodel = whisper.load_model("small").to(device)
whispermodel.eval()
text_tokenizer = Tokenizer(ckpt_dir)
# fabric = L.Fabric(devices=1, strategy="auto")
config = Config.from_file(ckpt_dir + "/model_config.yaml")
config.post_adapter = False

model = GPT(config, device=device)

state_dict = lazy_load(ckpt_dir + "/lit_model.pth")
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()


def get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device):
    # with torch.no_grad():
    mel = mel.unsqueeze(0).to(device)
    # audio_feature = whisper.decode(whispermodel,mel, options).audio_features
    audio_feature = whispermodel.embed_audio(mel)[0][:leng]
    T = audio_feature.size(0)
    input_ids_AA = []
    for i in range(7):
        input_ids_item = []
        input_ids_item.append(layershift(_input_a, i))
        input_ids_item += [layershift(_pad_a, i)] * T
        input_ids_item += [(layershift(_eoa, i)), layershift(_answer_a, i)]
        input_ids_AA.append(torch.tensor(input_ids_item))
    input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
    input_ids_AA.append(input_id_T)

    input_ids_AT = []
    for i in range(7):
        input_ids_item = []
        input_ids_item.append(layershift(_input_a, i))
        input_ids_item += [layershift(_pad_a, i)] * T
        input_ids_item += [(layershift(_eoa, i)), layershift(_pad_a, i)]
        input_ids_AT.append(torch.tensor(input_ids_item))
    input_id_T = torch.tensor([_input_t] + [_pad_t] * T + [_eot, _answer_t])
    input_ids_AT.append(input_id_T)

    input_ids = [input_ids_AA, input_ids_AT]
    stacked_inputids = [[] for _ in range(8)]
    for i in range(2):
        for j in range(8):
            stacked_inputids[j].append(input_ids[i][j])
    stacked_inputids = [torch.stack(tensors) for tensors in stacked_inputids]
    return torch.stack([audio_feature, audio_feature]), stacked_inputids


def next_token_batch(
    model: GPT,
    audio_features: torch.tensor,
    input_ids: list,
    whisper_lens: int,
    task: list,
    input_pos: torch.Tensor,
    **kwargs: Any,
) -> torch.Tensor:
    input_pos = input_pos.to(model.device)
    input_ids = [input_id.to(model.device) for input_id in input_ids]
    logits_a, logit_t = model(
        audio_features, input_ids, input_pos, whisper_lens=whisper_lens, task=task
    )

    for i in range(7):
        logits_a[i] = logits_a[i][0].unsqueeze(0)
    logit_t = logit_t[1].unsqueeze(0)

    next_audio_tokens = []
    for logit_a in logits_a:
        next_a = sample(logit_a, **kwargs).to(dtype=input_ids[0].dtype)
        next_audio_tokens.append(next_a)
    next_t = sample(logit_t, **kwargs).to(dtype=input_ids[0].dtype)
    return next_audio_tokens, next_t


def load_audio(path):
    audio = whisper.load_audio(path)
    duration_ms = (len(audio) / 16000) * 1000
    audio = whisper.pad_or_trim(audio)
    mel = whisper.log_mel_spectrogram(audio)
    return mel, int(duration_ms / 20) + 1


def generate_audio_data(snac_tokens, snacmodel, device=None):
    audio = reconstruct_tensors(snac_tokens, device)
    with torch.inference_mode():
        audio_hat = snacmodel.decode(audio)
    audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
    audio_data = audio_data.astype(np.int16)
    audio_data = audio_data.tobytes()
    return audio_data


@spaces.GPU
@torch.inference_mode()
def run_AT_batch_stream(
                        audio_path,
                        stream_stride=4,
                        max_returned_tokens=2048,
                        temperature=0.9,
                        top_k=1,
                        top_p=1.0,
                        eos_id_a=_eoa,
                        eos_id_t=_eot,
    ):

    assert os.path.exists(audio_path), f"audio file {audio_path} not found"

    model.set_kv_cache(batch_size=2, device=device)

    mel, leng = load_audio(audio_path)
    audio_feature, input_ids = get_input_ids_whisper_ATBatch(mel, leng, whispermodel, device)
    T = input_ids[0].size(1)
    # device = input_ids[0].device

    assert max_returned_tokens > T, f"max_returned_tokens {max_returned_tokens} should be greater than audio length {T}"

    if model.max_seq_length < max_returned_tokens - 1:
        raise NotImplementedError(
            f"max_seq_length {model.max_seq_length} needs to be >= {max_returned_tokens - 1}"
        )

    input_pos = torch.tensor([T], device=device)
    list_output = [[] for i in range(8)]
    tokens_A, token_T = next_token_batch(
        model,
        audio_feature.to(torch.float32).to(model.device),
        input_ids,
        [T - 3, T - 3],
        ["A1T2", "A1T2"],
        input_pos=torch.arange(0, T, device=device),
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
    )

    for i in range(7):
        list_output[i].append(tokens_A[i].tolist()[0])
    list_output[7].append(token_T.tolist()[0])

    model_input_ids = [[] for i in range(8)]
    for i in range(7):
        tokens_A[i] = tokens_A[i].clone() + padded_text_vocabsize + i * padded_audio_vocabsize
        model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
        model_input_ids[i].append(torch.tensor([layershift(4097, i)], device=device))
        model_input_ids[i] = torch.stack(model_input_ids[i])

    model_input_ids[-1].append(token_T.clone().to(torch.int32))
    model_input_ids[-1].append(token_T.clone().to(torch.int32))
    model_input_ids[-1] = torch.stack(model_input_ids[-1])

    text_end = False
    index = 1
    nums_generate = stream_stride
    begin_generate = False
    current_index = 0
    for _ in tqdm(range(2, max_returned_tokens - T + 1)):
        tokens_A, token_T = next_token_batch(
            model,
            None,
            model_input_ids,
            None,
            None,
            input_pos=input_pos,
            temperature=temperature,
            top_k=top_k,
            top_p=top_p,
        )

        if text_end:
            token_T = torch.tensor([_pad_t], device=device)

        if tokens_A[-1] == eos_id_a:
            break

        if token_T == eos_id_t:
            text_end = True

        for i in range(7):
            list_output[i].append(tokens_A[i].tolist()[0])
        list_output[7].append(token_T.tolist()[0])

        model_input_ids = [[] for i in range(8)]
        for i in range(7):
            tokens_A[i] = tokens_A[i].clone() +padded_text_vocabsize + i * padded_audio_vocabsize
            model_input_ids[i].append(tokens_A[i].clone().to(device).to(torch.int32))
            model_input_ids[i].append(
                torch.tensor([layershift(4097, i)], device=device)
            )
            model_input_ids[i] = torch.stack(model_input_ids[i])

        model_input_ids[-1].append(token_T.clone().to(torch.int32))
        model_input_ids[-1].append(token_T.clone().to(torch.int32))
        model_input_ids[-1] = torch.stack(model_input_ids[-1])

        if index == 7:
            begin_generate = True

        if begin_generate:
            current_index += 1
            if current_index == nums_generate:
                current_index = 0
                snac = get_snac(list_output, index, nums_generate)
                audio_stream = generate_audio_data(snac, snacmodel, device)
                yield audio_stream

        input_pos = input_pos.add_(1)
        index += 1
    text = text_tokenizer.decode(torch.tensor(list_output[-1]))
    print(f"text output: {text}")
    model.clear_kv_cache()
    return list_output


for chunk in run_AT_batch_stream('./data/samples/output1.wav'):
    pass


def process_audio(audio):
    filepath = audio
    print(f"filepath: {filepath}")
    if filepath is None:
        return

    cnt = 0
    tik = time.time()
    for chunk in run_AT_batch_stream(filepath):
        # Convert chunk to numpy array
        if cnt == 0:
            print(f"first chunk time cost: {time.time() - tik:.3f}")
        cnt += 1
        audio_data = np.frombuffer(chunk, dtype=np.int16)
        audio_data = audio_data.reshape(-1, OUT_CHANNELS)
        yield OUT_RATE, audio_data.astype(np.int16)


demo = gr.Interface(
    process_audio,
    inputs=gr.Audio(type="filepath", label="Microphone"),
    outputs=[gr.Audio(label="Response", streaming=True, autoplay=True)],
    title="Chat Mini-Omni Demo",
    # live=True,
)
demo.queue()
demo.launch()