File size: 21,507 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
"""Define all losses. When possible, as inheriting from nn.Module
To send predictions to target.device
"""
from random import random as rand

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import models


class GANLoss(nn.Module):
    def __init__(
        self,
        use_lsgan=True,
        target_real_label=1.0,
        target_fake_label=0.0,
        soft_shift=0.0,
        flip_prob=0.0,
        verbose=0,
    ):
        """Defines the GAN loss which uses either LSGAN or the regular GAN.
        When LSGAN is used, it is basically same as MSELoss,
        but it abstracts away the need to create the target label tensor
        that has the same size as the input +

        * label smoothing: target_real_label=0.75
        * label flipping: flip_prob > 0.

        source: https://github.com/sangwoomo/instagan/blob
        /b67e9008fcdd6c41652f8805f0b36bcaa8b632d6/models/networks.py

        Args:
            use_lsgan (bool, optional): Use MSE or BCE. Defaults to True.
            target_real_label (float, optional): Value for the real target.
                Defaults to 1.0.
            target_fake_label (float, optional): Value for the fake target.
                Defaults to 0.0.
            flip_prob (float, optional): Probability of flipping the label
                (use for real target in Discriminator only). Defaults to 0.0.
        """
        super().__init__()

        self.soft_shift = soft_shift
        self.verbose = verbose

        self.register_buffer("real_label", torch.tensor(target_real_label))
        self.register_buffer("fake_label", torch.tensor(target_fake_label))
        if use_lsgan:
            self.loss = nn.MSELoss()
        else:
            self.loss = nn.BCEWithLogitsLoss()
        self.flip_prob = flip_prob

    def get_target_tensor(self, input, target_is_real):
        soft_change = torch.FloatTensor(1).uniform_(0, self.soft_shift)
        if self.verbose > 0:
            print("GANLoss sampled soft_change:", soft_change.item())
        if target_is_real:
            target_tensor = self.real_label - soft_change
        else:
            target_tensor = self.fake_label + soft_change
        return target_tensor.expand_as(input)

    def __call__(self, input, target_is_real, *args, **kwargs):
        r = rand()
        if isinstance(input, list):
            loss = 0
            for pred_i in input:
                if isinstance(pred_i, list):
                    pred_i = pred_i[-1]
                if r < self.flip_prob:
                    target_is_real = not target_is_real
                target_tensor = self.get_target_tensor(pred_i, target_is_real)
                loss_tensor = self.loss(pred_i, target_tensor.to(pred_i.device))
                loss += loss_tensor
            return loss / len(input)
        else:
            if r < self.flip_prob:
                target_is_real = not target_is_real
            target_tensor = self.get_target_tensor(input, target_is_real)
            return self.loss(input, target_tensor.to(input.device))


class FeatMatchLoss(nn.Module):
    def __init__(self):
        super().__init__()
        self.criterionFeat = nn.L1Loss()

    def __call__(self, pred_real, pred_fake):
        # pred_{real, fake} are lists of features
        num_D = len(pred_fake)
        GAN_Feat_loss = 0.0
        for i in range(num_D):  # for each discriminator
            # last output is the final prediction, so we exclude it
            num_intermediate_outputs = len(pred_fake[i]) - 1
            for j in range(num_intermediate_outputs):  # for each layer output
                unweighted_loss = self.criterionFeat(
                    pred_fake[i][j], pred_real[i][j].detach()
                )
                GAN_Feat_loss += unweighted_loss / num_D
        return GAN_Feat_loss


class CrossEntropy(nn.Module):
    def __init__(self):
        super().__init__()
        self.loss = nn.CrossEntropyLoss()

    def __call__(self, logits, target):
        return self.loss(logits, target.to(logits.device).long())


class TravelLoss(nn.Module):
    def __init__(self, eps=1e-12):
        super().__init__()
        self.eps = eps

    def cosine_loss(self, real, fake):
        norm_real = torch.norm(real, p=2, dim=1)[:, None]
        norm_fake = torch.norm(fake, p=2, dim=1)[:, None]
        mat_real = real / norm_real
        mat_fake = fake / norm_fake
        mat_real = torch.max(mat_real, self.eps * torch.ones_like(mat_real))
        mat_fake = torch.max(mat_fake, self.eps * torch.ones_like(mat_fake))
        # compute only the diagonal of the matrix multiplication
        return torch.einsum("ij, ji -> i", mat_fake, mat_real).sum()

    def __call__(self, S_real, S_fake):
        self.v_real = []
        self.v_fake = []
        for i in range(len(S_real)):
            for j in range(i):
                self.v_real.append((S_real[i] - S_real[j])[None, :])
                self.v_fake.append((S_fake[i] - S_fake[j])[None, :])
        self.v_real_t = torch.cat(self.v_real, dim=0)
        self.v_fake_t = torch.cat(self.v_fake, dim=0)
        return self.cosine_loss(self.v_real_t, self.v_fake_t)


class TVLoss(nn.Module):
    """Total Variational Regularization: Penalizes differences in
    neighboring pixel values

    source:
    https://github.com/jxgu1016/Total_Variation_Loss.pytorch/blob/master/TVLoss.py
    """

    def __init__(self, tvloss_weight=1):
        """
        Args:
            TVLoss_weight (int, optional): [lambda i.e. weight for loss]. Defaults to 1.
        """
        super(TVLoss, self).__init__()
        self.tvloss_weight = tvloss_weight

    def forward(self, x):
        batch_size = x.size()[0]
        h_x = x.size()[2]
        w_x = x.size()[3]
        count_h = self._tensor_size(x[:, :, 1:, :])
        count_w = self._tensor_size(x[:, :, :, 1:])
        h_tv = torch.pow((x[:, :, 1:, :] - x[:, :, : h_x - 1, :]), 2).sum()
        w_tv = torch.pow((x[:, :, :, 1:] - x[:, :, :, : w_x - 1]), 2).sum()
        return self.tvloss_weight * 2 * (h_tv / count_h + w_tv / count_w) / batch_size

    def _tensor_size(self, t):
        return t.size()[1] * t.size()[2] * t.size()[3]


class MinentLoss(nn.Module):
    """
    Loss for the minimization of the entropy map
    Source for version 1: https://github.com/valeoai/ADVENT

    Version 2 adds the variance of the entropy map in the computation of the loss
    """

    def __init__(self, version=1, lambda_var=0.1):
        super().__init__()
        self.version = version
        self.lambda_var = lambda_var

    def __call__(self, pred):
        assert pred.dim() == 4
        n, c, h, w = pred.size()
        entropy_map = -torch.mul(pred, torch.log2(pred + 1e-30)) / np.log2(c)
        if self.version == 1:
            return torch.sum(entropy_map) / (n * h * w)
        else:
            entropy_map_demean = entropy_map - torch.sum(entropy_map) / (n * h * w)
            entropy_map_squ = torch.mul(entropy_map_demean, entropy_map_demean)
            return torch.sum(entropy_map + self.lambda_var * entropy_map_squ) / (
                n * h * w
            )


class MSELoss(nn.Module):
    """
    Creates a criterion that measures the mean squared error
    (squared L2 norm) between each element in the input x and target y .
    """

    def __init__(self):
        super().__init__()
        self.loss = nn.MSELoss()

    def __call__(self, prediction, target):
        return self.loss(prediction, target.to(prediction.device))


class L1Loss(MSELoss):
    """
    Creates a criterion that measures the mean absolute error
    (MAE) between each element in the input x and target y
    """

    def __init__(self):
        super().__init__()
        self.loss = nn.L1Loss()


class SIMSELoss(nn.Module):
    """Scale invariant MSE Loss"""

    def __init__(self):
        super(SIMSELoss, self).__init__()

    def __call__(self, prediction, target):
        d = prediction - target
        diff = torch.mean(d * d)
        relDiff = torch.mean(d) * torch.mean(d)
        return diff - relDiff


class SIGMLoss(nn.Module):
    """loss from MiDaS paper
    MiDaS did not specify how the gradients were computed but we use Sobel
    filters which approximate the derivative of an image.
    """

    def __init__(self, gmweight=0.5, scale=4, device="cuda"):
        super(SIGMLoss, self).__init__()
        self.gmweight = gmweight
        self.sobelx = torch.Tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]]).to(device)
        self.sobely = torch.Tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]]).to(device)
        self.scale = scale

    def __call__(self, prediction, target):
        # get disparities
        # align both the prediction and the ground truth to have zero
        # translation and unit scale
        t_pred = torch.median(prediction)
        t_targ = torch.median(target)
        s_pred = torch.mean(torch.abs(prediction - t_pred))
        s_targ = torch.mean(torch.abs(target - t_targ))
        pred = (prediction - t_pred) / s_pred
        targ = (target - t_targ) / s_targ

        R = pred - targ

        # get gradient map with sobel filters
        batch_size = prediction.size()[0]
        num_pix = prediction.size()[-1] * prediction.size()[-2]
        sobelx = (self.sobelx).expand((batch_size, 1, -1, -1))
        sobely = (self.sobely).expand((batch_size, 1, -1, -1))
        gmLoss = 0  # gradient matching term
        for k in range(self.scale):
            R_ = F.interpolate(R, scale_factor=1 / 2 ** k)
            Rx = F.conv2d(R_, sobelx, stride=1)
            Ry = F.conv2d(R_, sobely, stride=1)
            gmLoss += torch.sum(torch.abs(Rx) + torch.abs(Ry))
        gmLoss = self.gmweight / num_pix * gmLoss
        # scale invariant MSE
        simseLoss = 0.5 / num_pix * torch.sum(torch.abs(R))
        loss = simseLoss + gmLoss
        return loss


class ContextLoss(nn.Module):
    """
    Masked L1 loss on non-water
    """

    def __call__(self, input, target, mask):
        return torch.mean(torch.abs(torch.mul((input - target), 1 - mask)))


class ReconstructionLoss(nn.Module):
    """
    Masked L1 loss on water
    """

    def __call__(self, input, target, mask):
        return torch.mean(torch.abs(torch.mul((input - target), mask)))


##################################################################################
# VGG network definition
##################################################################################

# Source: https://github.com/NVIDIA/pix2pixHD
class Vgg19(nn.Module):
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = nn.Sequential()
        self.slice2 = nn.Sequential()
        self.slice3 = nn.Sequential()
        self.slice4 = nn.Sequential()
        self.slice5 = nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out


# Source: https://github.com/NVIDIA/pix2pixHD
class VGGLoss(nn.Module):
    def __init__(self, device):
        super().__init__()
        self.vgg = Vgg19().to(device).eval()
        self.criterion = nn.L1Loss()
        self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]

    def forward(self, x, y):
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)
        loss = 0
        for i in range(len(x_vgg)):
            loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
        return loss


def get_losses(opts, verbose, device=None):
    """Sets the loss functions to be used by G, D and C, as specified
    in the opts and returns a dictionnary of losses:

    losses = {
        "G": {
            "gan": {"a": ..., "t": ...},
            "cycle": {"a": ..., "t": ...}
            "auto": {"a": ..., "t": ...}
            "tasks": {"h": ..., "d": ..., "s": ..., etc.}
        },
        "D": GANLoss,
        "C": ...
    }
    """

    losses = {
        "G": {"a": {}, "p": {}, "tasks": {}},
        "D": {"default": {}, "advent": {}},
        "C": {},
    }

    # ------------------------------
    # -----  Generator Losses  -----
    # ------------------------------

    # painter losses
    if "p" in opts.tasks:
        losses["G"]["p"]["gan"] = (
            HingeLoss()
            if opts.gen.p.loss == "hinge"
            else GANLoss(
                use_lsgan=False,
                soft_shift=opts.dis.soft_shift,
                flip_prob=opts.dis.flip_prob,
            )
        )
        losses["G"]["p"]["dm"] = MSELoss()
        losses["G"]["p"]["vgg"] = VGGLoss(device)
        losses["G"]["p"]["tv"] = TVLoss()
        losses["G"]["p"]["context"] = ContextLoss()
        losses["G"]["p"]["reconstruction"] = ReconstructionLoss()
        losses["G"]["p"]["featmatch"] = FeatMatchLoss()

    # depth losses
    if "d" in opts.tasks:
        if not opts.gen.d.classify.enable:
            if opts.gen.d.loss == "dada":
                depth_func = DADADepthLoss()
            else:
                depth_func = SIGMLoss(opts.train.lambdas.G.d.gml)
        else:
            depth_func = CrossEntropy()

        losses["G"]["tasks"]["d"] = depth_func

    # segmentation losses
    if "s" in opts.tasks:
        losses["G"]["tasks"]["s"] = {}
        losses["G"]["tasks"]["s"]["crossent"] = CrossEntropy()
        losses["G"]["tasks"]["s"]["minent"] = MinentLoss()
        losses["G"]["tasks"]["s"]["advent"] = ADVENTAdversarialLoss(
            opts, gan_type=opts.dis.s.gan_type
        )

    # masker losses
    if "m" in opts.tasks:
        losses["G"]["tasks"]["m"] = {}
        losses["G"]["tasks"]["m"]["bce"] = nn.BCEWithLogitsLoss()
        if opts.gen.m.use_minent_var:
            losses["G"]["tasks"]["m"]["minent"] = MinentLoss(
                version=2, lambda_var=opts.train.lambdas.advent.ent_var
            )
        else:
            losses["G"]["tasks"]["m"]["minent"] = MinentLoss()
        losses["G"]["tasks"]["m"]["tv"] = TVLoss()
        losses["G"]["tasks"]["m"]["advent"] = ADVENTAdversarialLoss(
            opts, gan_type=opts.dis.m.gan_type
        )
        losses["G"]["tasks"]["m"]["gi"] = GroundIntersectionLoss()

    # ----------------------------------
    # -----  Discriminator Losses  -----
    # ----------------------------------
    if "p" in opts.tasks:
        losses["D"]["p"] = losses["G"]["p"]["gan"]
    if "m" in opts.tasks or "s" in opts.tasks:
        losses["D"]["advent"] = ADVENTAdversarialLoss(opts)
    return losses


class GroundIntersectionLoss(nn.Module):
    """
    Penalize areas in ground seg but not in flood mask
    """

    def __call__(self, pred, pseudo_ground):
        return torch.mean(1.0 * ((pseudo_ground - pred) > 0.5))


def prob_2_entropy(prob):
    """
    convert probabilistic prediction maps to weighted self-information maps
    """
    n, c, h, w = prob.size()
    return -torch.mul(prob, torch.log2(prob + 1e-30)) / np.log2(c)


class CustomBCELoss(nn.Module):
    """
    The first argument is a tensor and the second argument is an int.
    There is no need to take sigmoid before calling this function.
    """

    def __init__(self):
        super().__init__()
        self.loss = nn.BCEWithLogitsLoss()

    def __call__(self, prediction, target):
        return self.loss(
            prediction,
            torch.FloatTensor(prediction.size())
            .fill_(target)
            .to(prediction.get_device()),
        )


class ADVENTAdversarialLoss(nn.Module):
    """
    The class is for calculating the advent loss.
    It is used to indirectly shrink the domain gap between sim and real

    _call_ function:
    prediction: torch.tensor with shape of [bs,c,h,w]
    target: int; domain label: 0 (sim) or 1 (real)
    discriminator: the discriminator model tells if a tensor is from sim or real

    output: the loss value of GANLoss
    """

    def __init__(self, opts, gan_type="GAN"):
        super().__init__()
        self.opts = opts
        if gan_type == "GAN":
            self.loss = CustomBCELoss()
        elif gan_type == "WGAN" or "WGAN_gp" or "WGAN_norm":
            self.loss = lambda x, y: -torch.mean(y * x + (1 - y) * (1 - x))
        else:
            raise NotImplementedError

    def __call__(self, prediction, target, discriminator, depth_preds=None):
        """
        Compute the GAN loss from the Advent Discriminator given
        normalized (softmaxed) predictions (=pixel-wise class probabilities),
        and int labels (target).

        Args:
            prediction (torch.Tensor): pixel-wise probability distribution over classes
            target (torch.Tensor): pixel wise int target labels
            discriminator (torch.nn.Module): Discriminator to get the loss

        Returns:
            torch.Tensor: float 0-D loss
        """
        d_out = prob_2_entropy(prediction)
        if depth_preds is not None:
            d_out = d_out * depth_preds
        d_out = discriminator(d_out)
        if self.opts.dis.m.architecture == "OmniDiscriminator":
            d_out = multiDiscriminatorAdapter(d_out, self.opts)
        loss_ = self.loss(d_out, target)
        return loss_


def multiDiscriminatorAdapter(d_out: list, opts: dict) -> torch.tensor:
    """
    Because the OmniDiscriminator does not directly return a tensor
    (but a list of tensor).
    Since there is no multilevel masker, the 0th tensor in the list is all we want.
    This Adapter returns the first element(tensor) of the list that OmniDiscriminator
    returns.
    """
    if (
        isinstance(d_out, list) and len(d_out) == 1
    ):  # adapt the multi-scale OmniDiscriminator
        if not opts.dis.p.get_intermediate_features:
            d_out = d_out[0][0]
        else:
            d_out = d_out[0]
    else:
        raise Exception(
            "Check the setting of OmniDiscriminator! "
            + "For now, we don't support multi-scale OmniDiscriminator."
        )
    return d_out


class HingeLoss(nn.Module):
    """
    Adapted from https://github.com/NVlabs/SPADE/blob/master/models/networks/loss.py
    for  the painter
    """

    def __init__(self, tensor=torch.FloatTensor):
        super().__init__()
        self.zero_tensor = None
        self.Tensor = tensor

    def get_zero_tensor(self, input):
        if self.zero_tensor is None:
            self.zero_tensor = self.Tensor(1).fill_(0)
            self.zero_tensor.requires_grad_(False)
            self.zero_tensor = self.zero_tensor.to(input.device)
        return self.zero_tensor.expand_as(input)

    def loss(self, input, target_is_real, for_discriminator=True):
        if for_discriminator:
            if target_is_real:
                minval = torch.min(input - 1, self.get_zero_tensor(input))
                loss = -torch.mean(minval)
            else:
                minval = torch.min(-input - 1, self.get_zero_tensor(input))
                loss = -torch.mean(minval)
        else:
            assert target_is_real, "The generator's hinge loss must be aiming for real"
            loss = -torch.mean(input)
        return loss

    def __call__(self, input, target_is_real, for_discriminator=True):
        # computing loss is a bit complicated because |input| may not be
        # a tensor, but list of tensors in case of multiscale discriminator
        if isinstance(input, list):
            loss = 0
            for pred_i in input:
                if isinstance(pred_i, list):
                    pred_i = pred_i[-1]
                loss_tensor = self.loss(pred_i, target_is_real, for_discriminator)
                loss += loss_tensor
            return loss / len(input)
        else:
            return self.loss(input, target_is_real, for_discriminator)


class DADADepthLoss:
    """Defines the reverse Huber loss from DADA paper for depth prediction
    - Samples with larger residuals are penalized more by l2 term
    - Samples with smaller residuals are penalized more by l1 term
    From https://github.com/valeoai/DADA/blob/master/dada/utils/func.py
    """

    def loss_calc_depth(self, pred, label):
        n, c, h, w = pred.size()
        assert c == 1

        pred = pred.squeeze()
        label = label.squeeze()

        adiff = torch.abs(pred - label)
        batch_max = 0.2 * torch.max(adiff).item()
        t1_mask = adiff.le(batch_max).float()
        t2_mask = adiff.gt(batch_max).float()
        t1 = adiff * t1_mask
        t2 = (adiff * adiff + batch_max * batch_max) / (2 * batch_max)
        t2 = t2 * t2_mask
        return (torch.sum(t1) + torch.sum(t2)) / torch.numel(pred.data)

    def __call__(self, pred, label):
        return self.loss_calc_depth(pred, label)