File size: 20,416 Bytes
ce190ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
"""
This scripts plots examples of the images that get best and worse metrics
"""
print("Imports...", end="")
import os
import sys
from argparse import ArgumentParser
from pathlib import Path

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import yaml
from imageio import imread
from skimage.color import rgba2rgb
from sklearn.metrics.pairwise import euclidean_distances

sys.path.append("../")

from climategan.data import encode_mask_label
from climategan.eval_metrics import edges_coherence_std_min
from eval_masker import crop_and_resize

# -----------------------
# -----  Constants  -----
# -----------------------

# Metrics
metrics = ["error", "f05", "edge_coherence"]

dict_metrics = {
    "names": {
        "tpr": "TPR, Recall, Sensitivity",
        "tnr": "TNR, Specificity, Selectivity",
        "fpr": "FPR",
        "fpt": "False positives relative to image size",
        "fnr": "FNR, Miss rate",
        "fnt": "False negatives relative to image size",
        "mpr": "May positive rate (MPR)",
        "mnr": "May negative rate (MNR)",
        "accuracy": "Accuracy (ignoring may)",
        "error": "Error",
        "f05": "F05 score",
        "precision": "Precision",
        "edge_coherence": "Edge coherence",
        "accuracy_must_may": "Accuracy (ignoring cannot)",
    },
    "key_metrics": ["error", "f05", "edge_coherence"],
}


# Colors
colorblind_palette = sns.color_palette("colorblind")
color_cannot = colorblind_palette[1]
color_must = colorblind_palette[2]
color_may = colorblind_palette[7]
color_pred = colorblind_palette[4]

icefire = sns.color_palette("icefire", as_cmap=False, n_colors=5)
color_tp = icefire[0]
color_tn = icefire[1]
color_fp = icefire[4]
color_fn = icefire[3]


def parsed_args():
    """
    Parse and returns command-line args

    Returns:
        argparse.Namespace: the parsed arguments
    """
    parser = ArgumentParser()
    parser.add_argument(
        "--input_csv",
        default="ablations_metrics_20210311.csv",
        type=str,
        help="CSV containing the results of the ablation study",
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        help="Output directory",
    )
    parser.add_argument(
        "--models_log_path",
        default=None,
        type=str,
        help="Path containing the log files of the models",
    )
    parser.add_argument(
        "--masker_test_set_dir",
        default=None,
        type=str,
        help="Directory containing the test images",
    )
    parser.add_argument(
        "--best_model",
        default="dada, msd_spade, pseudo",
        type=str,
        help="The string identifier of the best model",
    )
    parser.add_argument(
        "--dpi",
        default=200,
        type=int,
        help="DPI for the output images",
    )
    parser.add_argument(
        "--alpha",
        default=0.5,
        type=float,
        help="Transparency of labels shade",
    )
    parser.add_argument(
        "--percentile",
        default=0.05,
        type=float,
        help="Transparency of labels shade",
    )
    parser.add_argument(
        "--seed",
        default=None,
        type=int,
        help="Bootstrap random seed, for reproducibility",
    )
    parser.add_argument(
        "--no_images",
        action="store_true",
        default=False,
        help="Do not generate images",
    )

    return parser.parse_args()


def map_color(arr, input_color, output_color, rtol=1e-09):
    """
    Maps one color to another
    """
    input_color_arr = np.tile(input_color, (arr.shape[:2] + (1,)))
    output = arr.copy()
    output[np.all(np.isclose(arr, input_color_arr, rtol=rtol), axis=2)] = output_color
    return output


def plot_labels(ax, img, label, img_id, do_legend):
    label_colmap = label.astype(float)
    label_colmap = map_color(label_colmap, (255, 0, 0), color_cannot)
    label_colmap = map_color(label_colmap, (0, 0, 255), color_must)
    label_colmap = map_color(label_colmap, (0, 0, 0), color_may)

    ax.imshow(img)
    ax.imshow(label_colmap, alpha=0.5)
    ax.axis("off")

    # Annotation
    ax.annotate(
        xy=(0.05, 0.95),
        xycoords="axes fraction",
        xytext=(0.05, 0.95),
        textcoords="axes fraction",
        text=img_id,
        fontsize="x-large",
        verticalalignment="top",
        color="white",
    )

    # Legend
    if do_legend:
        handles = []
        lw = 1.0
        handles.append(
            mpatches.Patch(facecolor=color_must, label="must", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(facecolor=color_may, label="must", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(
                facecolor=color_cannot, label="must", linewidth=lw, alpha=0.66
            )
        )
        labels = ["Must-be-flooded", "May-be-flooded", "Cannot-be-flooded"]
        ax.legend(
            handles=handles,
            labels=labels,
            bbox_to_anchor=(0.0, 1.0, 1.0, 0.075),
            ncol=3,
            mode="expand",
            fontsize="xx-small",
            frameon=False,
        )


def plot_pred(ax, img, pred, img_id, do_legend):
    pred = np.tile(np.expand_dims(pred, axis=2), reps=(1, 1, 3))

    pred_colmap = pred.astype(float)
    pred_colmap = map_color(pred_colmap, (1, 1, 1), color_pred)
    pred_colmap_ma = np.ma.masked_not_equal(pred_colmap, color_pred)
    pred_colmap_ma = pred_colmap_ma.mask * img + pred_colmap_ma

    ax.imshow(img)
    ax.imshow(pred_colmap_ma, alpha=0.5)
    ax.axis("off")

    # Annotation
    ax.annotate(
        xy=(0.05, 0.95),
        xycoords="axes fraction",
        xytext=(0.05, 0.95),
        textcoords="axes fraction",
        text=img_id,
        fontsize="x-large",
        verticalalignment="top",
        color="white",
    )

    # Legend
    if do_legend:
        handles = []
        lw = 1.0
        handles.append(
            mpatches.Patch(facecolor=color_pred, label="must", linewidth=lw, alpha=0.66)
        )
        labels = ["Prediction"]
        ax.legend(
            handles=handles,
            labels=labels,
            bbox_to_anchor=(0.0, 1.0, 1.0, 0.075),
            ncol=3,
            mode="expand",
            fontsize="xx-small",
            frameon=False,
        )


def plot_correct_incorrect(ax, img_filename, img, label, img_id, do_legend):
    # FP
    fp_map = imread(
        model_path / "eval-metrics/fp" / "{}_fp.png".format(Path(img_filename).stem)
    )
    fp_map = np.tile(np.expand_dims(fp_map, axis=2), reps=(1, 1, 3))

    fp_map_colmap = fp_map.astype(float)
    fp_map_colmap = map_color(fp_map_colmap, (1, 1, 1), color_fp)

    # FN
    fn_map = imread(
        model_path / "eval-metrics/fn" / "{}_fn.png".format(Path(img_filename).stem)
    )
    fn_map = np.tile(np.expand_dims(fn_map, axis=2), reps=(1, 1, 3))

    fn_map_colmap = fn_map.astype(float)
    fn_map_colmap = map_color(fn_map_colmap, (1, 1, 1), color_fn)

    # TP
    tp_map = imread(
        model_path / "eval-metrics/tp" / "{}_tp.png".format(Path(img_filename).stem)
    )
    tp_map = np.tile(np.expand_dims(tp_map, axis=2), reps=(1, 1, 3))

    tp_map_colmap = tp_map.astype(float)
    tp_map_colmap = map_color(tp_map_colmap, (1, 1, 1), color_tp)

    # TN
    tn_map = imread(
        model_path / "eval-metrics/tn" / "{}_tn.png".format(Path(img_filename).stem)
    )
    tn_map = np.tile(np.expand_dims(tn_map, axis=2), reps=(1, 1, 3))

    tn_map_colmap = tn_map.astype(float)
    tn_map_colmap = map_color(tn_map_colmap, (1, 1, 1), color_tn)

    label_colmap = label.astype(float)
    label_colmap = map_color(label_colmap, (0, 0, 0), color_may)
    label_colmap_ma = np.ma.masked_not_equal(label_colmap, color_may)
    label_colmap_ma = label_colmap_ma.mask * img + label_colmap_ma

    # Combine masks
    maps = fp_map_colmap + fn_map_colmap + tp_map_colmap + tn_map_colmap
    maps_ma = np.ma.masked_equal(maps, (0, 0, 0))
    maps_ma = maps_ma.mask * img + maps_ma

    ax.imshow(img)
    ax.imshow(label_colmap_ma, alpha=0.5)
    ax.imshow(maps_ma, alpha=0.5)
    ax.axis("off")

    # Annotation
    ax.annotate(
        xy=(0.05, 0.95),
        xycoords="axes fraction",
        xytext=(0.05, 0.95),
        textcoords="axes fraction",
        text=img_id,
        fontsize="x-large",
        verticalalignment="top",
        color="white",
    )

    # Legend
    if do_legend:
        handles = []
        lw = 1.0
        handles.append(
            mpatches.Patch(facecolor=color_tp, label="TP", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(facecolor=color_tn, label="TN", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(facecolor=color_fp, label="FP", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(facecolor=color_fn, label="FN", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(
                facecolor=color_may, label="May-be-flooded", linewidth=lw, alpha=0.66
            )
        )
        labels = ["TP", "TN", "FP", "FN", "May-be-flooded"]
        ax.legend(
            handles=handles,
            labels=labels,
            bbox_to_anchor=(0.0, 1.0, 1.0, 0.075),
            ncol=5,
            mode="expand",
            fontsize="xx-small",
            frameon=False,
        )


def plot_edge_coherence(ax, img, label, pred, img_id, do_legend):
    pred = np.tile(np.expand_dims(pred, axis=2), reps=(1, 1, 3))

    ec, pred_ec, label_ec = edges_coherence_std_min(
        np.squeeze(pred[:, :, 0]), np.squeeze(encode_mask_label(label, "flood"))
    )

    ##################
    # Edge distances #
    ##################

    # Location of edges
    pred_ec_coord = np.argwhere(pred_ec > 0)
    label_ec_coord = np.argwhere(label_ec > 0)

    # Normalized pairwise distances between pred and label
    dist_mat = np.divide(
        euclidean_distances(pred_ec_coord, label_ec_coord), pred_ec.shape[0]
    )

    # Standard deviation of the minimum distance from pred to label
    min_dist = np.min(dist_mat, axis=1)  # noqa: F841

    #############
    # Make plot #
    #############

    pred_ec = np.tile(
        np.expand_dims(np.asarray(pred_ec > 0, dtype=float), axis=2), reps=(1, 1, 3)
    )
    pred_ec_colmap = map_color(pred_ec, (1, 1, 1), color_pred)
    pred_ec_colmap_ma = np.ma.masked_not_equal(pred_ec_colmap, color_pred)  # noqa: F841

    label_ec = np.tile(
        np.expand_dims(np.asarray(label_ec > 0, dtype=float), axis=2), reps=(1, 1, 3)
    )
    label_ec_colmap = map_color(label_ec, (1, 1, 1), color_must)
    label_ec_colmap_ma = np.ma.masked_not_equal(  # noqa: F841
        label_ec_colmap, color_must
    )

    # Combined pred and label edges
    combined_ec = pred_ec_colmap + label_ec_colmap
    combined_ec_ma = np.ma.masked_equal(combined_ec, (0, 0, 0))
    combined_ec_img = combined_ec_ma.mask * img + combined_ec

    # Pred
    pred_colmap = pred.astype(float)
    pred_colmap = map_color(pred_colmap, (1, 1, 1), color_pred)
    pred_colmap_ma = np.ma.masked_not_equal(pred_colmap, color_pred)

    # Must
    label_colmap = label.astype(float)
    label_colmap = map_color(label_colmap, (0, 0, 255), color_must)
    label_colmap_ma = np.ma.masked_not_equal(label_colmap, color_must)

    # TP
    tp_map = imread(
        model_path / "eval-metrics/tp" / "{}_tp.png".format(Path(srs_sel.filename).stem)
    )
    tp_map = np.tile(np.expand_dims(tp_map, axis=2), reps=(1, 1, 3))
    tp_map_colmap = tp_map.astype(float)
    tp_map_colmap = map_color(tp_map_colmap, (1, 1, 1), color_tp)
    tp_map_colmap_ma = np.ma.masked_not_equal(tp_map_colmap, color_tp)

    # Combination
    comb_pred = (
        (pred_colmap_ma.mask ^ tp_map_colmap_ma.mask)
        & tp_map_colmap_ma.mask
        & combined_ec_ma.mask
    ) * pred_colmap
    comb_label = (
        (label_colmap_ma.mask ^ pred_colmap_ma.mask)
        & pred_colmap_ma.mask
        & combined_ec_ma.mask
    ) * label_colmap
    comb_tp = combined_ec_ma.mask * tp_map_colmap.copy()
    combined = comb_tp + comb_label + comb_pred
    combined_ma = np.ma.masked_equal(combined, (0, 0, 0))
    combined_ma = combined_ma.mask * combined_ec_img + combined_ma

    ax.imshow(combined_ec_img, alpha=1)
    ax.imshow(combined_ma, alpha=0.5)
    ax.axis("off")

    # Plot lines
    idx_sort_x = np.argsort(pred_ec_coord[:, 1])
    offset = 100
    for idx in range(offset, pred_ec_coord.shape[0], offset):
        y0, x0 = pred_ec_coord[idx_sort_x[idx], :]
        argmin = np.argmin(dist_mat[idx_sort_x[idx]])
        y1, x1 = label_ec_coord[argmin, :]
        ax.plot([x0, x1], [y0, y1], color="white", linewidth=0.5)

    # Annotation
    ax.annotate(
        xy=(0.05, 0.95),
        xycoords="axes fraction",
        xytext=(0.05, 0.95),
        textcoords="axes fraction",
        text=img_id,
        fontsize="x-large",
        verticalalignment="top",
        color="white",
    )
    # Legend
    if do_legend:
        handles = []
        lw = 1.0
        handles.append(
            mpatches.Patch(facecolor=color_tp, label="TP", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(facecolor=color_pred, label="pred", linewidth=lw, alpha=0.66)
        )
        handles.append(
            mpatches.Patch(
                facecolor=color_must, label="Must-be-flooded", linewidth=lw, alpha=0.66
            )
        )
        labels = ["TP", "Prediction", "Must-be-flooded"]
        ax.legend(
            handles=handles,
            labels=labels,
            bbox_to_anchor=(0.0, 1.0, 1.0, 0.075),
            ncol=3,
            mode="expand",
            fontsize="xx-small",
            frameon=False,
        )


def plot_images_metric(axes, metric, img_filename, img_id, do_legend):

    # Read images
    img_path = imgs_orig_path / img_filename
    label_path = labels_path / "{}_labeled.png".format(Path(img_filename).stem)
    img, label = crop_and_resize(img_path, label_path)
    img = rgba2rgb(img) if img.shape[-1] == 4 else img / 255.0
    pred = imread(
        model_path / "eval-metrics/pred" / "{}_pred.png".format(Path(img_filename).stem)
    )

    # Label
    plot_labels(axes[0], img, label, img_id, do_legend)

    # Prediction
    plot_pred(axes[1], img, pred, img_id, do_legend)

    # Correct / incorrect
    if metric in ["error", "f05"]:
        plot_correct_incorrect(axes[2], img_filename, img, label, img_id, do_legend)
    # Edge coherence
    elif metric == "edge_coherence":
        plot_edge_coherence(axes[2], img, label, pred, img_id, do_legend)
    else:
        raise ValueError


def scatterplot_metrics_pair(ax, df, x_metric, y_metric, dict_images):

    sns.scatterplot(data=df, x=x_metric, y=y_metric, ax=ax)

    # Set X-label
    ax.set_xlabel(dict_metrics["names"][x_metric], rotation=0, fontsize="medium")

    # Set Y-label
    ax.set_ylabel(dict_metrics["names"][y_metric], rotation=90, fontsize="medium")

    # Change spines
    sns.despine(ax=ax, left=True, bottom=True)

    annotate_scatterplot(ax, dict_images, x_metric, y_metric)


def scatterplot_metrics(ax, df, dict_images):

    sns.scatterplot(data=df, x="error", y="f05", hue="edge_coherence", ax=ax)

    # Set X-label
    ax.set_xlabel(dict_metrics["names"]["error"], rotation=0, fontsize="medium")

    # Set Y-label
    ax.set_ylabel(dict_metrics["names"]["f05"], rotation=90, fontsize="medium")

    annotate_scatterplot(ax, dict_images, "error", "f05")

    # Change spines
    sns.despine(ax=ax, left=True, bottom=True)

    # Set XY limits
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    ax.set_xlim([0.0, xlim[1]])
    ax.set_ylim([ylim[0], 1.0])


def annotate_scatterplot(ax, dict_images, x_metric, y_metric, offset=0.1):
    xlim = ax.get_xlim()
    ylim = ax.get_ylim()
    x_len = xlim[1] - xlim[0]
    y_len = ylim[1] - ylim[0]
    x_th = xlim[1] - x_len / 2.0
    y_th = ylim[1] - y_len / 2.0
    for text, d in dict_images.items():
        x = d[x_metric]
        y = d[y_metric]
        x_text = x + x_len * offset if x < x_th else x - x_len * offset
        y_text = y + y_len * offset if y < y_th else y - y_len * offset
        ax.annotate(
            xy=(x, y),
            xycoords="data",
            xytext=(x_text, y_text),
            textcoords="data",
            text=text,
            arrowprops=dict(facecolor="black", shrink=0.05),
            fontsize="medium",
            color="black",
        )


if __name__ == "__main__":
    # -----------------------------
    # -----  Parse arguments  -----
    # -----------------------------
    args = parsed_args()
    print("Args:\n" + "\n".join([f"    {k:20}: {v}" for k, v in vars(args).items()]))

    # Determine output dir
    if args.output_dir is None:
        output_dir = Path(os.environ["SLURM_TMPDIR"])
    else:
        output_dir = Path(args.output_dir)
    if not output_dir.exists():
        output_dir.mkdir(parents=True, exist_ok=False)

    # Store args
    output_yml = output_dir / "labels.yml"
    with open(output_yml, "w") as f:
        yaml.dump(vars(args), f)

    # Data dirs
    imgs_orig_path = Path(args.masker_test_set_dir) / "imgs"
    labels_path = Path(args.masker_test_set_dir) / "labels"

    # Read CSV
    df = pd.read_csv(args.input_csv, index_col="model_img_idx")

    # Select best model
    df = df.loc[df.model_feats == args.best_model]
    v_key, model_dir = df.model.unique()[0].split("/")
    model_path = Path(args.models_log_path) / "ablation-{}".format(v_key) / model_dir

    # Set up plot
    sns.reset_orig()
    sns.set(style="whitegrid")
    plt.rcParams.update({"font.family": "serif"})
    plt.rcParams.update(
        {
            "font.serif": [
                "Computer Modern Roman",
                "Times New Roman",
                "Utopia",
                "New Century Schoolbook",
                "Century Schoolbook L",
                "ITC Bookman",
                "Bookman",
                "Times",
                "Palatino",
                "Charter",
                "serif" "Bitstream Vera Serif",
                "DejaVu Serif",
            ]
        }
    )

    if args.seed:
        np.random.seed(args.seed)
    img_ids = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    dict_images = {}
    idx = 0
    for metric in metrics:

        fig, axes = plt.subplots(nrows=2, ncols=3, dpi=200, figsize=(18, 12))

        # Select best
        if metric == "error":
            ascending = True
        else:
            ascending = False
        idx_rand = np.random.permutation(int(args.percentile * len(df)))[0]
        srs_sel = df.sort_values(by=metric, ascending=ascending).iloc[idx_rand]
        img_id = img_ids[idx]
        dict_images.update({img_id: srs_sel})

        # Read images
        img_filename = srs_sel.filename

        if not args.no_images:
            axes_row = axes[0, :]
            plot_images_metric(axes_row, metric, img_filename, img_id, do_legend=True)

        idx += 1

        # Select worst
        if metric == "error":
            ascending = False
        else:
            ascending = True
        idx_rand = np.random.permutation(int(args.percentile * len(df)))[0]
        srs_sel = df.sort_values(by=metric, ascending=ascending).iloc[idx_rand]
        img_id = img_ids[idx]
        dict_images.update({img_id: srs_sel})

        # Read images
        img_filename = srs_sel.filename

        if not args.no_images:
            axes_row = axes[1, :]
            plot_images_metric(axes_row, metric, img_filename, img_id, do_legend=False)

        idx += 1

        # Save figure
        output_fig = output_dir / "{}.png".format(metric)
        fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")

    fig = plt.figure(dpi=200)
    scatterplot_metrics(fig.gca(), df, dict_images)

    #     fig, axes = plt.subplots(nrows=1, ncols=3, dpi=200, figsize=(18, 5))
    #
    #     scatterplot_metrics_pair(axes[0], df, 'error', 'f05', dict_images)
    #     scatterplot_metrics_pair(axes[1], df, 'error', 'edge_coherence', dict_images)
    #     scatterplot_metrics_pair(axes[2], df, 'f05', 'edge_coherence', dict_images)
    #
    output_fig = output_dir / "scatterplots.png"
    fig.savefig(output_fig, dpi=fig.dpi, bbox_inches="tight")