Spaces:
Runtime error
Runtime error
File size: 6,207 Bytes
ce190ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from climategan.blocks import InterpolateNearest2d
from climategan.utils import find_target_size
class _ASPPModule(nn.Module):
# https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/aspp.py
def __init__(
self, inplanes, planes, kernel_size, padding, dilation, BatchNorm, no_init
):
super().__init__()
self.atrous_conv = nn.Conv2d(
inplanes,
planes,
kernel_size=kernel_size,
stride=1,
padding=padding,
dilation=dilation,
bias=False,
)
self.bn = BatchNorm(planes)
self.relu = nn.ReLU()
if not no_init:
self._init_weight()
def forward(self, x):
x = self.atrous_conv(x)
x = self.bn(x)
return self.relu(x)
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class ASPP(nn.Module):
# https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/aspp.py
def __init__(self, backbone, output_stride, BatchNorm, no_init):
super().__init__()
if backbone == "mobilenet":
inplanes = 320
else:
inplanes = 2048
if output_stride == 16:
dilations = [1, 6, 12, 18]
elif output_stride == 8:
dilations = [1, 12, 24, 36]
else:
raise NotImplementedError
self.aspp1 = _ASPPModule(
inplanes,
256,
1,
padding=0,
dilation=dilations[0],
BatchNorm=BatchNorm,
no_init=no_init,
)
self.aspp2 = _ASPPModule(
inplanes,
256,
3,
padding=dilations[1],
dilation=dilations[1],
BatchNorm=BatchNorm,
no_init=no_init,
)
self.aspp3 = _ASPPModule(
inplanes,
256,
3,
padding=dilations[2],
dilation=dilations[2],
BatchNorm=BatchNorm,
no_init=no_init,
)
self.aspp4 = _ASPPModule(
inplanes,
256,
3,
padding=dilations[3],
dilation=dilations[3],
BatchNorm=BatchNorm,
no_init=no_init,
)
self.global_avg_pool = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(inplanes, 256, 1, stride=1, bias=False),
BatchNorm(256),
nn.ReLU(),
)
self.conv1 = nn.Conv2d(1280, 256, 1, bias=False)
self.bn1 = BatchNorm(256)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(0.5)
if not no_init:
self._init_weight()
def forward(self, x):
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x4.size()[2:], mode="bilinear", align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return self.dropout(x)
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
# n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
# m.weight.data.normal_(0, math.sqrt(2. / n))
torch.nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
class DeepLabV2Decoder(nn.Module):
# https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/decoder.py
# https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/deeplab.py
def __init__(self, opts, no_init=False):
super().__init__()
self.aspp = ASPP("resnet", 16, nn.BatchNorm2d, no_init)
self.use_dada = ("d" in opts.tasks) and opts.gen.s.use_dada
conv_modules = [
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.5),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(),
nn.Dropout(0.1),
]
if opts.gen.s.upsample_featuremaps:
conv_modules = [InterpolateNearest2d(scale_factor=2)] + conv_modules
conv_modules += [
nn.Conv2d(256, opts.gen.s.output_dim, kernel_size=1, stride=1),
]
self.conv = nn.Sequential(*conv_modules)
self._target_size = find_target_size(opts, "s")
print(
" - {}: setting target size to {}".format(
self.__class__.__name__, self._target_size
)
)
def set_target_size(self, size):
"""
Set final interpolation's target size
Args:
size (int, list, tuple): target size (h, w). If int, target will be (i, i)
"""
if isinstance(size, (list, tuple)):
self._target_size = size[:2]
else:
self._target_size = (size, size)
def forward(self, z, z_depth=None):
if self._target_size is None:
error = "self._target_size should be set with self.set_target_size()"
error += "to interpolate logits to the target seg map's size"
raise Exception(error)
if isinstance(z, (list, tuple)):
z = z[0]
if z.shape[1] != 2048:
raise Exception(
"Segmentation decoder will only work with 2048 channels for z"
)
if z_depth is not None and self.use_dada:
z = z * z_depth
y = self.aspp(z)
y = self.conv(y)
return F.interpolate(y, self._target_size, mode="bilinear", align_corners=True)
|