File size: 6,685 Bytes
8ce4d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#!/usr/bin/env python3

import argparse
from vespa.package import (
    ApplicationPackage,
    Field,
    Schema,
    Document,
    HNSW,
    RankProfile,
    Function,
    AuthClient,
    Parameter,
    FieldSet,
    SecondPhaseRanking,
)
from vespa.deployment import VespaCloud
import os


def main():
    parser = argparse.ArgumentParser(description="Deploy Vespa application")
    parser.add_argument("--tenant_name", required=True, help="Vespa Cloud tenant name")
    parser.add_argument(
        "--vespa_application_name", required=True, help="Vespa application name"
    )
    parser.add_argument(
        "--token_id_write", required=True, help="Vespa Cloud token ID for write access"
    )
    parser.add_argument(
        "--token_id_read", required=True, help="Vespa Cloud token ID for read access"
    )

    args = parser.parse_args()
    tenant_name = args.tenant_name
    vespa_app_name = args.vespa_application_name
    token_id_write = args.token_id_write
    token_id_read = args.token_id_read

    # Define the Vespa schema
    colpali_schema = Schema(
        name="pdf_page",
        document=Document(
            fields=[
                Field(
                    name="id",
                    type="string",
                    indexing=["summary", "index"],
                    match=["word"],
                ),
                Field(name="url", type="string", indexing=["summary", "index"]),
                Field(
                    name="title",
                    type="string",
                    indexing=["summary", "index"],
                    match=["text"],
                    index="enable-bm25",
                ),
                Field(
                    name="page_number", type="int", indexing=["summary", "attribute"]
                ),
                Field(name="image", type="raw", indexing=["summary"]),
                Field(
                    name="text",
                    type="string",
                    indexing=["summary", "index"],
                    match=["text"],
                    index="enable-bm25",
                ),
                Field(
                    name="embedding",
                    type="tensor<int8>(patch{}, v[16])",
                    indexing=[
                        "attribute",
                        "index",
                    ],  # adds HNSW index for candidate retrieval.
                    ann=HNSW(
                        distance_metric="hamming",
                        max_links_per_node=32,
                        neighbors_to_explore_at_insert=400,
                    ),
                ),
            ]
        ),
        fieldsets=[
            FieldSet(name="default", fields=["title", "url", "page_number", "text"]),
            FieldSet(name="image", fields=["image"]),
        ],
    )

    # Define rank profiles
    colpali_profile = RankProfile(
        name="default",
        inputs=[("query(qt)", "tensor<float>(querytoken{}, v[128])")],
        functions=[
            Function(
                name="max_sim",
                expression="""
                    sum(
                        reduce(
                            sum(
                                query(qt) * unpack_bits(attribute(embedding)) , v
                            ),
                            max, patch
                        ),
                        querytoken
                    )
                """,
            ),
            Function(name="bm25_score", expression="bm25(title) + bm25(text)"),
        ],
        first_phase="bm25_score",
        second_phase=SecondPhaseRanking(expression="max_sim", rerank_count=10),
    )
    colpali_schema.add_rank_profile(colpali_profile)

    # Add retrieval-and-rerank rank profile
    input_query_tensors = []
    MAX_QUERY_TERMS = 64
    for i in range(MAX_QUERY_TERMS):
        input_query_tensors.append((f"query(rq{i})", "tensor<int8>(v[16])"))

    input_query_tensors.append(("query(qt)", "tensor<float>(querytoken{}, v[128])"))
    input_query_tensors.append(("query(qtb)", "tensor<int8>(querytoken{}, v[16])"))

    colpali_retrieval_profile = RankProfile(
        name="retrieval-and-rerank",
        inputs=input_query_tensors,
        functions=[
            Function(
                name="max_sim",
                expression="""
                    sum(
                        reduce(
                            sum(
                                query(qt) * unpack_bits(attribute(embedding)) , v
                            ),
                            max, patch
                        ),
                        querytoken
                    )
                """,
            ),
            Function(
                name="max_sim_binary",
                expression="""
                    sum(
                      reduce(
                        1/(1 + sum(
                            hamming(query(qtb), attribute(embedding)) ,v)
                        ),
                        max,
                        patch
                      ),
                      querytoken
                    )
                """,
            ),
        ],
        first_phase="max_sim_binary",
        second_phase=SecondPhaseRanking(expression="max_sim", rerank_count=10),
    )
    colpali_schema.add_rank_profile(colpali_retrieval_profile)

    # Create the Vespa application package
    vespa_application_package = ApplicationPackage(
        name=vespa_app_name,
        schema=[colpali_schema],
        auth_clients=[
            AuthClient(
                id="mtls",  # Note that you still need to include the mtls client.
                permissions=["read", "write"],
                parameters=[Parameter("certificate", {"file": "security/clients.pem"})],
            ),
            AuthClient(
                id="token_write",
                permissions=["read", "write"],
                parameters=[Parameter("token", {"id": token_id_write})],
            ),
            AuthClient(
                id="token_read",
                permissions=["read"],
                parameters=[Parameter("token", {"id": token_id_read})],
            ),
        ],
    )
    vespa_team_api_key = os.getenv("VESPA_TEAM_API_KEY")
    # Deploy the application to Vespa Cloud
    vespa_cloud = VespaCloud(
        tenant=tenant_name,
        application=vespa_app_name,
        key_content=vespa_team_api_key,
        application_package=vespa_application_package,
    )

    app = vespa_cloud.deploy()

    # Output the endpoint URL
    endpoint_url = vespa_cloud.get_token_endpoint()
    print(f"Application deployed. Token endpoint URL: {endpoint_url}")


if __name__ == "__main__":
    main()