File size: 14,185 Bytes
bd34ae9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
########################################################################################
import gradio as gr
import cv2
import matplotlib
import matplotlib.cm
import mediapipe as mp
import numpy as np
import os
import struct
import tempfile
import torch
from mediapipe.framework.formats import landmark_pb2
from mediapipe.python.solutions.drawing_utils import _normalized_to_pixel_coordinates
from PIL import Image
from quads import QUADS
from typing import List, Mapping, Optional, Tuple, Union
from utils import colorize, get_most_recent_subdirectory
class face_image_to_face_mesh:
def __init__(self):
self.zoe_me = True
self.uvwrap = not True
def demo(self):
if self.zoe_me:
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
self.zoe = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).to(DEVICE).eval()
demo = gr.Blocks(css=self.css(), cache_examples=True)
with demo:
gr.Markdown(self.header())
with gr.Row():
with gr.Column():
upload_image = gr.Image(label="Input image", type="numpy", source="upload")
self.temp_dir = get_most_recent_subdirectory( upload_image.DEFAULT_TEMP_DIR )
print( f'The temp_dir is {self.temp_dir}' )
gr.Examples( examples=[
'examples/blonde-00081-399357008.png',
'examples/dude-00110-1227390728.png',
'examples/granny-00056-1867315302.png',
'examples/tuffie-00039-499759385.png',
'examples/character.png',
], inputs=[upload_image] )
upload_image_btn = gr.Button(value="Detect faces")
if self.zoe_me:
with gr.Group():
zoe_scale = gr.Slider(label="Mix the ZoeDepth with the MediaPipe Depth", value=1, minimum=0, maximum=1, step=.01)
flat_scale = gr.Slider(label="Depth scale, smaller is flatter and possibly more flattering", value=1, minimum=0, maximum=1, step=.01)
min_detection_confidence = gr.Slider(label="Mininum face detection confidence", value=.5, minimum=0, maximum=1.0, step=0.01)
else:
use_zoe = False
zoe_scale = 0
with gr.Group():
gr.Markdown(self.footer())
with gr.Column():
with gr.Group():
output_mesh = gr.Model3D(clear_color=3*[0], label="3D Model",elem_id='mesh-display-output')
output_image = gr.Image(label="Output image",elem_id='img-display-output')
depth_image = gr.Image(label="Depth image",elem_id='img-display-output')
num_faces_detected = gr.Number(label="Number of faces detected", value=0)
upload_image_btn.click(
fn=self.detect,
inputs=[upload_image, min_detection_confidence,zoe_scale,flat_scale],
outputs=[output_mesh, output_image, depth_image, num_faces_detected]
)
demo.launch()
def detect(self, image, min_detection_confidence, zoe_scale, flat_scale):
width = image.shape[1]
height = image.shape[0]
ratio = width / height
mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mp_face_mesh = mp.solutions.face_mesh
mesh = "examples/converted/in-granny.obj"
if self.zoe_me and 0 < zoe_scale:
depth = self.zoe.infer_pil(image)
idepth = colorize(depth, cmap='gray_r')
else:
depth = None
idepth = image
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
with mp_face_mesh.FaceMesh(
static_image_mode=True,
max_num_faces=1,
min_detection_confidence=min_detection_confidence) as face_mesh:
results = face_mesh.process(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
if not results.multi_face_landmarks:
return mesh, image, idepth, 0
annotated_image = image.copy()
for face_landmarks in results.multi_face_landmarks:
(mesh,mtl,png) = self.toObj(image=image, width=width, height=height, ratio=ratio, landmark_list=face_landmarks, depth=depth, zoe_scale=zoe_scale, flat_scale=flat_scale)
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_tesselation_style())
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles
.get_default_face_mesh_contours_style())
return mesh, annotated_image, idepth, 1
def toObj( self, image: np.ndarray, width:int, height:int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float, flat_scale: float):
print( f'you have such pretty hair', self.temp_dir )
hf_hack = True
if hf_hack:
obj_file = tempfile.NamedTemporaryFile(suffix='.obj', delete=False)
mtl_file = tempfile.NamedTemporaryFile(suffix='.mtl', delete=False)
png_file = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
else:
obj_file = tempfile.NamedTemporaryFile(suffix='.obj', dir=self.temp_dir, delete=False)
mtl_file = tempfile.NamedTemporaryFile(suffix='.mtl', dir=self.temp_dir, delete=False)
png_file = tempfile.NamedTemporaryFile(suffix='.png', dir=self.temp_dir, delete=False)
############################################
(points,coordinates,colors) = self.landmarksToPoints( image, width, height, ratio, landmark_list, depth, zoe_scale, flat_scale )
############################################
lines = []
lines.append( f'o MyMesh' )
if hf_hack:
# the 'file=' is a gradio hack
lines.append( f'#mtllib file={mtl_file.name}' )
else:
# the 'file=' is a gradio hack
lines.append( f'mtllib file={mtl_file.name}' )
for index, point in enumerate(points):
color = colors[index]
scaled_color = [value / 255 for value in color] # Scale colors down to 0-1 range
flipped = [-value for value in point]
flipped[ 0 ] = -flipped[ 0 ]
lines.append( "v " + " ".join(map(str, flipped + color)) )
for coordinate in coordinates:
lines.append( "vt " + " ".join([str(value) for value in coordinate]) )
for quad in QUADS:
#quad = list(reversed(quad))
normal = self.totallyNormal( points[ quad[ 0 ] -1 ], points[ quad[ 1 ] -1 ], points[ quad[ 2 ] -1 ] )
lines.append( "vn " + " ".join([str(value) for value in normal]) )
lines.append( 'usemtl MyMaterial' )
quadIndex = 0
for quad in QUADS:
quadIndex = 1 + quadIndex
face_uv = "f " + " ".join([f'{vertex}/{vertex}/{quadIndex}' for vertex in quad])
face_un = "f " + " ".join([str(vertex) for vertex in quad])
if self.uvwrap:
lines.append( face_uv )
else:
lines.append( f'#{face_uv}' )
lines.append( f'{face_un}' )
#"f " + " ".join([str(vertex) for vertex in quad]) )
out = open( obj_file.name, 'w' )
out.write( '\n'.join( lines ) + '\n' )
out.close()
############################################
lines = []
lines.append( 'newmtl MyMaterial' )
lines.append( f'map_Kd file={png_file.name}' ) # the 'file=' is a gradio hack
out = open( mtl_file.name, 'w' )
out.write( '\n'.join( lines ) + '\n' )
out.close()
############################################
cv2.imwrite(png_file.name, cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
############################################
print( f'I know it is special to you so I saved it to {obj_file.name} since we are friends' )
return (obj_file.name,mtl_file.name,png_file.name)
def landmarksToPoints( self, image:np.ndarray, width: int, height: int, ratio: float, landmark_list: landmark_pb2.NormalizedLandmarkList, depth: np.ndarray, zoe_scale: float, flat_scale: float ):
points = [] # 3d vertices
coordinates = [] # 2d texture coordinates
colors = [] # 3d rgb info
mins = [+np.inf] * 3
maxs = [-np.inf] * 3
mp_scale = 1 - zoe_scale
print( f'zoe_scale:{zoe_scale}, mp_scale:{mp_scale}' )
for idx, landmark in enumerate(landmark_list.landmark):
x, y = _normalized_to_pixel_coordinates(landmark.x,landmark.y,width,height)
color = image[y,x]
colors.append( [value / 255 for value in color ] )
coordinates.append( [x/width,1-y/height] )
if depth is not None:
landmark.z = depth[y, x] * zoe_scale + mp_scale * landmark.z
landmark.z = landmark.z * flat_scale
point = [landmark.x * ratio, landmark.y, landmark.z];
for pidx,value in enumerate( point ):
mins[pidx] = min(mins[pidx],value)
maxs[pidx] = max(maxs[pidx],value)
points.append( point )
mids = [(min_val + max_val) / 2 for min_val, max_val in zip(mins, maxs)]
for idx,point in enumerate( points ):
points[idx] = [(val-mid) for val, mid in zip(point,mids)]
print( f'mins: {mins}' )
print( f'mids: {mids}' )
print( f'maxs: {maxs}' )
return (points,coordinates,colors)
def totallyNormal(self, p0, p1, p2):
v1 = np.array(p1) - np.array(p0)
v2 = np.array(p2) - np.array(p0)
normal = np.cross(v1, v2)
normal = normal / np.linalg.norm(normal)
return normal.tolist()
def header(self):
return ("""
# Image to Quad Mesh
Uses MediaPipe to detect a face in an image and convert it to a quad mesh.
Saves to OBJ since gltf does not support quad faces. The 3d viewer has Y pointing the opposite direction from Blender, so ya hafta spin it.
The face depth with Zoe can be a bit much and without it is a bit generic. In blender you can fix this just by snapping to the high poly model. For photos turning it down to .4 helps, but may still need cleanup...
Highly recommend running it locally. The 3D model has uv values in the faces, but you will have to either use the script or do some manually tomfoolery.
Quick import result in examples/converted/movie-gallery.mp4 under files
""")
def footer(self):
return ( """
# Using the Textured Mesh in Blender
There a couple of annoying steps atm after you download the obj from the 3d viewer.
You can use the script meshin-around.sh in the files section to do the conversion or manually:
1. edit the file and change the mtllib line to use fun.mtl
2. replace / delete all lines that start with 'f', eg :%s,^f.*,,
3. uncomment all the lines that start with '#f', eg: :%s,^#f,f,
4. save and exit
5. create fun.mtl to point to the texture like:
```
newmtl MyMaterial
map_Kd fun.png
```
Make sure the obj, mtl and png are all in the same directory
Now the import will have the texture data: File -> Import -> Wavefront (obj) -> fun.obj
This is all a work around for a weird hf+gradios+babylonjs bug which seems to be related to the version
of babylonjs being used... It works fine in a local babylonjs sandbox...
# Suggested Workflows
Here are some workflow ideas.
## retopologize high poly face mesh
1. sculpt high poly mesh in blender
2. snapshot the face
3. generate the mesh using the mediapipe stuff
4. import the low poly mediapipe face
5. snap the mesh to the high poly model
6. model the rest of the low poly model
7. bake the normal / etc maps to the low poly face model
8. it's just that easy 😛
Ideally it would be a plugin...
## stable diffusion integration
1. generate a face in sd
2. generate the mesh
3. repose it and use it for further generation
May need to expanded the generated mesh to cover more, maybe with
<a href="https://github.com/shunsukesaito/PIFu" target="_blank">PIFu model</a>.
""")
def css(self):
return ("""
#mesh-display-output {
max-height: 44vh;
max-width: 44vh;
width:auto;
height:auto
}
#img-display-output {
max-height: 28vh;
max-width: 28vh;
width:auto;
height:auto
}
""")
face_image_to_face_mesh().demo()
# EOF
########################################################################################
|