Spaces:
Running
Running
File size: 28,804 Bytes
0f78c57 c532b56 0f78c57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
import torch
import torchvision
from torchvision.models.detection import FasterRCNN_ResNet50_FPN_Weights
from transformers import DetrImageProcessor, DetrForObjectDetection
from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import gradio as gr
import os
import io
import uuid
# Load Faster R-CNN model with proper weight assignment
frcnn_weights = FasterRCNN_ResNet50_FPN_Weights.DEFAULT
frcnn_model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=None, progress=True)
state_dict = torch.hub.load_state_dict_from_url(frcnn_weights.url, progress=True, map_location=torch.device('cpu'))
frcnn_model.load_state_dict(state_dict, strict=False)
frcnn_model.eval()
# Load DETR model and processor
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
# Load Mask R-CNN model
maskrcnn_model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)
maskrcnn_model.eval()
# Load Mask2Former model and processor
mask2former_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-small-coco-instance")
mask2former_model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-small-coco-instance")
mask2former_model.eval()
# COCO class names for Faster R-CNN and Mask R-CNN
COCO_INSTANCE_CATEGORY_NAMES = [
'__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
]
# Mask2Former label map
MASK2FORMER_COCO_NAMES = mask2former_model.config.id2label if hasattr(mask2former_model.config, "id2label") else {str(i): str(i) for i in range(133)}
def detect_objects_frcnn(image, threshold=0.5):
"""Run Faster R-CNN detection."""
if image is None:
blank_img = Image.new('RGB', (400, 400), color='white')
plt.figure(figsize=(10, 10))
plt.imshow(blank_img)
plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
transform=plt.gca().transAxes, fontsize=20)
plt.axis('off')
output_path = f"frcnn_blank_output_{uuid.uuid4()}.png"
plt.savefig(output_path)
plt.close()
return output_path, 0
try:
threshold = float(threshold) if threshold is not None else 0.5
image = image.convert('RGB')
img_array = np.array(image).astype(np.float32) / 255.0
transform = frcnn_weights.transforms()
image_tensor = transform(Image.fromarray((img_array * 255).astype(np.uint8))).unsqueeze(0)
with torch.no_grad():
prediction = frcnn_model(image_tensor)[0]
boxes = prediction['boxes'].cpu().numpy()
labels = prediction['labels'].cpu().numpy()
scores = prediction['scores'].cpu().numpy()
valid_detections = sum(1 for score in scores if score >= threshold)
image_np = np.array(image)
plt.figure(figsize=(10, 10))
plt.imshow(image_np)
ax = plt.gca()
for box, label, score in zip(boxes, labels, scores):
if score >= threshold:
x1, y1, x2, y2 = box
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color='red', linewidth=2))
class_name = COCO_INSTANCE_CATEGORY_NAMES[label]
ax.text(x1, y1, f'{class_name}: {score:.2f}', bbox=dict(facecolor='yellow', alpha=0.5), fontsize=12, color='black')
plt.axis('off')
plt.tight_layout()
output_path = f"frcnn_output_{uuid.uuid4()}.png"
plt.savefig(output_path)
plt.close()
return output_path, valid_detections
except Exception as e:
error_img = Image.new('RGB', (400, 400), color='white')
plt.figure(figsize=(10, 10))
plt.imshow(error_img)
plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
transform=plt.gca().transAxes, fontsize=12, wrap=True)
plt.axis('off')
error_path = f"frcnn_error_output_{uuid.uuid4()}.png"
plt.savefig(error_path)
plt.close()
return error_path, 0
def detect_objects_detr(image, threshold=0.9):
"""Run DETR detection."""
if image is None:
blank_img = Image.new('RGB', (400, 400), color='white')
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(blank_img)
ax.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=20)
plt.axis('off')
output_path = f"detr_blank_output_{uuid.uuid4()}.png"
plt.savefig(output_path)
plt.close(fig)
return output_path, 0
try:
image = image.convert('RGB')
inputs = detr_processor(images=image, return_tensors="pt")
outputs = detr_model(**inputs)
target_sizes = torch.tensor([image.size[::-1]])
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=threshold)[0]
valid_detections = len(results["scores"])
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(image)
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
xmin, ymin, xmax, ymax = box.tolist()
ax.add_patch(patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=2, edgecolor='red', facecolor='none'))
ax.text(xmin, ymin, f"{detr_model.config.id2label[label.item()]}: {round(score.item(), 2)}",
bbox=dict(facecolor='yellow', alpha=0.5), fontsize=8)
plt.axis('off')
output_path = f"detr_output_{uuid.uuid4()}.png"
plt.savefig(output_path)
plt.close(fig)
return output_path, valid_detections
except Exception as e:
error_img = Image.new('RGB', (400, 400), color='white')
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(error_img)
ax.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
transform=ax.transAxes, fontsize=12, wrap=True)
plt.axis('off')
error_path = f"detr_error_output_{uuid.uuid4()}.png"
plt.savefig(error_path)
plt.close(fig)
return error_path, 0
def detect_objects_maskrcnn(image, threshold=0.5):
"""Run Mask R-CNN detection and segmentation."""
if image is None:
blank_img = Image.new('RGB', (400, 400), color='white')
plt.figure(figsize=(10, 10))
plt.imshow(blank_img)
plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
transform=plt.gca().transAxes, fontsize=20)
plt.axis('off')
output_path = f"maskrcnn_blank_output_{uuid.uuid4()}.png"
plt.savefig(output_path)
plt.close()
return output_path, 0
try:
image = image.convert('RGB')
transform = torchvision.transforms.ToTensor()
img_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
output = maskrcnn_model(img_tensor)[0]
masks = output['masks']
boxes = output['boxes'].cpu().numpy()
labels = output['labels'].cpu().numpy()
scores = output['scores'].cpu().numpy()
valid_detections = sum(1 for score in scores if score >= threshold)
image_np = np.array(image).copy()
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(image_np)
for i in range(len(masks)):
if scores[i] >= threshold:
mask = masks[i, 0].cpu().numpy()
mask = mask > 0.5
color = np.random.rand(3)
colored_mask = np.zeros_like(image_np, dtype=np.uint8)
for c in range(3):
colored_mask[:, :, c] = mask * int(color[c] * 255)
image_np = np.where(mask[:, :, None], 0.5 * image_np + 0.5 * colored_mask, image_np).astype(np.uint8)
x1, y1, x2, y2 = boxes[i]
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color=color, linewidth=2))
label = COCO_INSTANCE_CATEGORY_NAMES[labels[i]]
ax.text(x1, y1, f"{label}: {scores[i]:.2f}", bbox=dict(facecolor='yellow', alpha=0.5), fontsize=10)
ax.imshow(image_np)
ax.axis('off')
output_path = f"maskrcnn_output_{uuid.uuid4()}.png"
plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
plt.close()
return output_path, valid_detections
except Exception as e:
error_img = Image.new('RGB', (400, 400), color='white')
plt.figure(figsize=(10, 10))
plt.imshow(error_img)
plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
transform=plt.gca().transAxes, fontsize=12, wrap=True)
plt.axis('off')
error_path = f"maskrcnn_error_output_{uuid.uuid4()}.png"
plt.savefig(error_path)
plt.close()
return error_path, 0
def detect_objects_mask2former(image, threshold=0.5):
"""Run Mask2Former detection and segmentation."""
if image is None:
blank_img = Image.new('RGB', (400, 400), color='white')
plt.figure(figsize=(10, 10))
plt.imshow(blank_img)
plt.text(0.5, 0.5, "No image provided", horizontalalignment='center', verticalalignment='center',
transform=plt.gca().transAxes, fontsize=20)
plt.axis('off')
output_path = f"mask2former_blank_output_{uuid.uuid4()}.png"
plt.savefig(output_path)
plt.close()
return output_path, 0
try:
image = image.convert('RGB')
inputs = mask2former_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = mask2former_model(**inputs)
results = mask2former_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
segmentation_map = results["segmentation"].cpu().numpy()
segments_info = results["segments_info"]
valid_detections = sum(1 for segment in segments_info if segment.get("score", 1.0) >= threshold)
image_np = np.array(image).copy()
overlay = image_np.copy()
fig, ax = plt.subplots(1, figsize=(10, 10))
ax.imshow(image_np)
for segment in segments_info:
score = segment.get("score", 1.0)
if score < threshold:
continue
segment_id = segment["id"]
label_id = segment["label_id"]
mask = segmentation_map == segment_id
color = np.random.rand(3)
overlay[mask] = (overlay[mask] * 0.5 + np.array(color) * 255 * 0.5).astype(np.uint8)
y_indices, x_indices = np.where(mask)
if len(x_indices) == 0 or len(y_indices) == 0:
continue
x1, x2 = x_indices.min(), x_indices.max()
y1, y2 = y_indices.min(), y_indices.max()
label_name = MASK2FORMER_COCO_NAMES.get(str(label_id), str(label_id))
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, color=color, linewidth=2))
ax.text(x1, y1, f"{label_name}: {score:.2f}", bbox=dict(facecolor='yellow', alpha=0.5), fontsize=10)
ax.imshow(overlay)
ax.axis('off')
output_path = f"mask2former_output_{uuid.uuid4()}.png"
plt.savefig(output_path, bbox_inches='tight', pad_inches=0)
plt.close()
return output_path, valid_detections
except Exception as e:
error_img = Image.new('RGB', (400, 400), color='white')
plt.figure(figsize=(10, 10))
plt.imshow(error_img)
plt.text(0.5, 0.5, f"Error: {str(e)}", horizontalalignment='center', verticalalignment='center',
transform=plt.gca().transAxes, fontsize=12, wrap=True)
plt.axis('off')
error_path = f"mask2former_error_output_{uuid.uuid4()}.png"
plt.savefig(error_path)
plt.close()
return error_path, 0
def update_model_choices(category):
"""Update model choices for prediction radio buttons based on selected category."""
if category == "Object Detection":
return gr.update(choices=["ConvNet (Faster R-CNN)", "Transformer (DETR)"], value=None, visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
elif category == "Object Segmentation":
return gr.update(choices=["ConvNet (Mask R-CNN)", "Transformer (Mask2Former)"], value=None, visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
return gr.update(choices=[], visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def analyze_performance(image, category, user_opinion, frcnn_threshold=0.5, detr_threshold=0.9, maskrcnn_threshold=0.5, mask2former_threshold=0.5):
"""Analyze and compare model performance for all models in the selected category."""
if image is None:
return "Please upload an image first.", None, None, None, None, "No analysis available."
frcnn_result = None
detr_result = None
maskrcnn_result = None
mask2former_result = None
frcnn_count = 0
detr_count = 0
maskrcnn_count = 0
mask2former_count = 0
if category == "Object Detection":
frcnn_result, frcnn_count = detect_objects_frcnn(image, frcnn_threshold)
detr_result, detr_count = detect_objects_detr(image, detr_threshold)
elif category == "Object Segmentation":
maskrcnn_result, maskrcnn_count = detect_objects_maskrcnn(image, maskrcnn_threshold)
mask2former_result, mask2former_count = detect_objects_mask2former(image, mask2former_threshold)
# Analyze performance
counts = {}
model_mapping = {
"ConvNet (Faster R-CNN)": "ConvNet (Faster R-CNN)",
"Transformer (DETR)": "Transformer (DETR)",
"ConvNet (Mask R-CNN)": "ConvNet (Mask R-CNN)",
"Transformer (Mask2Former)": "Transformer (Mask2Former)"
}
if category == "Object Detection":
counts = {
"ConvNet (Faster R-CNN)": frcnn_count,
"Transformer (DETR)": detr_count
}
elif category == "Object Segmentation":
counts = {
"ConvNet (Mask R-CNN)": maskrcnn_count,
"Transformer (Mask2Former)": mask2former_count
}
max_count = max(counts.values())
max_models = [model for model, count in counts.items() if count == max_count]
if len(max_models) == 1:
analysis = f"Result: {max_models[0]} performed best, identifying {max_count} objects.\n\n"
else:
analysis = f"Result: {', '.join(max_models)} performed equally well, each identifying {max_count} objects.\n\n"
if user_opinion:
analysis += f"You predicted that {user_opinion} would perform best.\n"
if user_opinion in max_models:
analysis += f"Congratulations, your prediction was correct!\n"
else:
analysis += f"Your prediction was not correct. {user_opinion} identified {counts[user_opinion]} objects, while {', '.join(max_models)} performed best with {max_count} objects. Please try again with a new image.\n"
if category == "Object Detection":
analysis += "\nConvNet (Faster R-CNN) is efficient and reliable for general object identification tasks. Transformer (DETR) excels in complex scenes by leveraging advanced context understanding."
elif category == "Object Segmentation":
analysis += "\nConvNet (Mask R-CNN) provides precise object outlines for detailed analysis. Transformer (Mask2Former) often outperforms in complex scenes due to its advanced architecture."
# Image-specific recommendation
img_array = np.array(image)
height, width = img_array.shape[:2]
pixel_variance = np.var(img_array)
if height * width > 1000 * 1000:
analysis += f"\n\nThis high-resolution image benefits from Transformer models, which excel in detailed and complex scenes."
if pixel_variance > 1000:
analysis += f"\n\nThis image has high complexity. Transformer models often provide superior results in such cases."
if height * width < 500 * 500:
analysis += f"\n\nFor smaller images, ConvNet models often deliver reliable results with lower computational demands."
if category == "Object Segmentation" and max_count > 0:
analysis += "\n\nFor detailed outlining tasks, Transformer (Mask2Former) may be preferable for complex scenes due to its advanced design."
# Enhanced result formatting
if user_opinion and user_opinion in max_models:
celebration = "๐โจ"
analysis = analysis.replace("Congratulations", f"{celebration} EPIC WIN! {celebration}")
analysis = analysis.replace("!\n", "! ๐ฅณ\n")
analysis += "\n\n๐ You've mastered the AI showdown! ๐"
elif user_opinion:
analysis = analysis.replace("try again", "try again ๐ช")
# Convert to HTML with styling
html_analysis = f"""
<div class="{'celebrate' if user_opinion in max_models else ''}" style="margin: 15px 0;">
<h3 style='color: {"#4CAF50" if user_opinion in max_models else "#f44336"}; margin-bottom: 15px;'>
{"๐ " + max_models[0] + " Dominates!" if len(max_models) == 1 else "โ๏ธ Tie Battle!"}
</h3>
<div style="background: var(--background-fill-primary); padding: 20px; border-radius: 10px;
white-space: pre-wrap; overflow-wrap: break-word; color: var(--text-color);">
{analysis}
</div>
</div>
"""
return "Analysis complete!", frcnn_result, detr_result, maskrcnn_result, mask2former_result, html_analysis
# Create Gradio interface with enhanced design
with gr.Blocks(title="AI Vision Showdown", theme=gr.themes.Default(primary_hue="emerald", secondary_hue="blue")) as app:
gr.Markdown("""
# ๐ฏ AI Vision Showdown: ConvNets vs Transformers
### ๐ค Battle of the algorithms! Upload an image and predict which AI will dominate!
""")
# Enhanced CSS
gr.HTML("""
<style>
@keyframes celebrate {
0% { transform: rotate(0deg); }
25% { transform: rotate(5deg); }
50% { transform: rotate(-5deg); }
75% { transform: rotate(5deg); }
100% { transform: rotate(0deg); }
}
.celebrate { animation: celebrate 0.5s ease-in-out; }
.battle-card {
border-radius: 15px;
padding: 20px;
margin: 10px 0;
background: var(--background-fill-primary);
border: 1px solid var(--border-color-primary);
}
.analysis-box {
background: var(--background-fill-secondary) !important;
color: var(--text-color) !important;
padding: 20px;
border-radius: 10px;
white-space: pre-wrap;
overflow-wrap: break-word;
}
.loading-status {
padding: 15px;
background: var(--background-fill-secondary);
border-radius: 8px;
margin: 10px 0;
text-align: center;
font-weight: bold;
}
</style>
""")
# State variables
image_state = gr.State(None)
category_state = gr.State(None)
loading_status = gr.HTML(visible=False)
# Top Section: Inputs
with gr.Row(variant="battle-card"):
with gr.Column(scale=1, min_width=300):
gr.Markdown("## ๐ค Image Upload Zone")
image_input = gr.Image(type="pil", label="Drag & Drop Your Challenge Image")
upload_button = gr.Button("๐ผ Upload Challenge Image", variant="primary")
with gr.Column(scale=1, min_width=300):
with gr.Group(visible=False) as prediction_selection:
gr.Markdown("## ๐ฎ Prediction Arena")
category_choice = gr.Radio(
choices=["Object Detection", "Object Segmentation"],
label="โ๏ธ Select Battle Ground",
value=None,
elem_classes="battle-card"
)
user_opinion = gr.Radio(
choices=[],
label="๐น Predict the Victor",
value=None,
visible=False,
elem_classes="battle-card"
)
# Enhanced threshold controls
with gr.Accordion("๐๏ธ Advanced Battle Parameters", open=False):
frcnn_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
label="Faster R-CNN Confidence (Speed Demon ๐๏ธ)",
visible=False
)
detr_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.9, step=0.05,
label="DETR Confidence (Attention Master ๐)",
visible=False
)
maskrcnn_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
label="Mask R-CNN Confidence (Precision Expert โ๏ธ)",
visible=False
)
mask2former_threshold = gr.Slider(
minimum=0.0, maximum=1.0, value=0.5, step=0.05,
label="Mask2Former Confidence (Transformer Champ ๐ค)",
visible=False
)
detect_button = gr.Button("โ๏ธ Start Showdown", variant="primary")
# Results Section
with gr.Group(visible=False) as outputs_panel:
gr.Markdown("## ๐ Battle Results")
with gr.Tabs():
with gr.TabItem("Object Detection Warriors", visible=False) as detection_tab:
with gr.Row():
frcnn_result = gr.Image(type="filepath", label="๐ Faster R-CNN (ConvNet Champion)", elem_classes="battle-card")
detr_result = gr.Image(type="filepath", label="๐ง DETR (Transformer Visionary)", elem_classes="battle-card")
with gr.TabItem("Segmentation Gladiators", visible=False) as segmentation_tab:
with gr.Row():
maskrcnn_result = gr.Image(type="filepath", label="โ๏ธ Mask R-CNN (Pixel Perfect)", elem_classes="battle-card")
mask2former_result = gr.Image(type="filepath", label="๐ก๏ธ Mask2Former (Segmentation Master)", elem_classes="battle-card")
# Analysis Section
with gr.Group(visible=False) as results_panel:
gr.Markdown("## ๐ Battle Report")
analysis_output = gr.HTML(label="Victory Analysis", elem_classes="battle-card")
restart_button = gr.Button("๐ New Challenge", variant="secondary")
# Upload button click event
def upload_image(img):
if img is None:
return None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
return img, gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
upload_button.click(
fn=upload_image,
inputs=[image_input],
outputs=[image_state, prediction_selection, outputs_panel, results_panel]
)
# Category selection event
def update_prediction_options(category):
if category is None:
return None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
model_update, frcnn_vis, detr_vis, maskrcnn_vis, mask2former_vis = update_model_choices(category)
return category, model_update, frcnn_vis, detr_vis, maskrcnn_vis, mask2former_vis
category_choice.change(
fn=update_prediction_options,
inputs=[category_choice],
outputs=[category_state, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold]
)
# Detect button click event
def run_detection(image, category, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold):
if not category or not user_opinion:
return "Please select a category and prediction.", None, None, None, None, "No analysis available.", gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
def analyze_with_progress(progress=gr.Progress()):
progress(0.1, desc="โ๏ธ Models are gearing up...")
result = analyze_performance(image, category, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold)
progress(1.0, desc="โ
Battle complete!")
return result
try:
message, frcnn_result_img, detr_result_img, maskrcnn_result_img, mask2former_result_img, html_analysis = analyze_with_progress()
return [
message,
gr.update(value=frcnn_result_img, visible=category == "Object Detection"),
gr.update(value=detr_result_img, visible=category == "Object Detection"),
gr.update(value=maskrcnn_result_img, visible=category == "Object Segmentation"),
gr.update(value=mask2former_result_img, visible=category == "Object Segmentation"),
html_analysis,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=category == "Object Detection"),
gr.update(visible=category == "Object Segmentation"),
gr.update(visible=False)
]
except Exception as e:
return [f"Error: {str(e)}"] + [gr.update()]*9 + [gr.update(visible=False)]
detect_button.click(
fn=run_detection,
inputs=[image_state, category_state, user_opinion, frcnn_threshold, detr_threshold, maskrcnn_threshold, mask2former_threshold],
outputs=[gr.Textbox(visible=False), frcnn_result, detr_result, maskrcnn_result, mask2former_result,
analysis_output, outputs_panel, results_panel, detection_tab, segmentation_tab, loading_status]
)
# Restart button click event
def restart():
return None, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
restart_button.click(
fn=restart,
inputs=[],
outputs=[image_state, category_state, prediction_selection, outputs_panel, results_panel, frcnn_result, detr_result, maskrcnn_result, mask2former_result, analysis_output, user_opinion, category_choice, detection_tab, segmentation_tab]
)
# Example images
example_images = [
os.path.join(os.getcwd(), "TEST_IMG_1.jpg"),
os.path.join(os.getcwd(), "TEST_IMG_2.JPG"),
os.path.join(os.getcwd(), "TEST_IMG_3.jpg"),
os.path.join(os.getcwd(), "TEST_IMG_4.jpg")
]
valid_examples = [img for img in example_images if os.path.exists(img)]
if valid_examples:
gr.Markdown("## ๐งฉ Try These Example Challenges:")
gr.Examples(
examples=valid_examples,
inputs=image_input,
examples_per_page=5,
label=""
)
if __name__ == "__main__":
app.launch(debug=True) |