Spaces:
Runtime error
Runtime error
File size: 11,878 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import cv2
import numpy as np
import PIL
from PIL import Image
import torch
import torchvision
import os
def save_tensor_image(
filename, image, minus1to1_normalized=False):
r"""Convert a 3 dimensional torch tensor to a PIL image with the desired
width and height.
Args:
filename (str): Image filename to be saved to.
image (3 x W1 x H1 tensor): Image tensor
minus1to1_normalized (bool): True if the tensor values are in [-1,
1]. Otherwise, we assume the values are in [0, 1].
Returns:
(PIL image): The resulting PIL image.
"""
if len(image.size()) != 3:
raise ValueError('Image tensor dimension does not equal = 3.')
if image.size(0) != 3:
raise ValueError('Image has more than 3 channels.')
if minus1to1_normalized:
# Normalize back to [0, 1]
image = (image + 1) * 0.5
dirname = os.path.dirname(filename)
os.makedirs(dirname, exist_ok=True)
image_grid = torchvision.utils.make_grid(
image, nrow=1, padding=0, normalize=False)
torchvision.utils.save_image(image_grid, filename, nrow=1)
return
def tensor2pilimage(image, width=None, height=None, minus1to1_normalized=False):
r"""Convert a 3 dimensional torch tensor to a PIL image with the desired
width and height.
Args:
image (3 x W1 x H1 tensor): Image tensor
width (int): Desired width for the result PIL image.
height (int): Desired height for the result PIL image.
minus1to1_normalized (bool): True if the tensor values are in [-1,
1]. Otherwise, we assume the values are in [0, 1].
Returns:
(PIL image): The resulting PIL image.
"""
if len(image.size()) != 3:
raise ValueError('Image tensor dimension does not equal = 3.')
if image.size(0) != 3:
raise ValueError('Image has more than 3 channels.')
if minus1to1_normalized:
# Normalize back to [0, 1]
image = (image + 1) * 0.5
image = image.detach().cpu().squeeze().numpy()
image = np.transpose(image, (1, 2, 0)) * 255
output_img = Image.fromarray(np.uint8(image))
if width is not None and height is not None:
output_img = output_img.resize((width, height), Image.BICUBIC)
return output_img
def tensor2im(image_tensor, imtype=np.uint8, normalize=True,
three_channel_output=True):
r"""Convert tensor to image.
Args:
image_tensor (torch.tensor or list of torch.tensor): If tensor then
(NxCxHxW) or (NxTxCxHxW) or (CxHxW).
imtype (np.dtype): Type of output image.
normalize (bool): Is the input image normalized or not?
three_channel_output (bool): Should single channel images be made 3
channel in output?
Returns:
(numpy.ndarray, list if case 1, 2 above).
"""
if image_tensor is None:
return None
if isinstance(image_tensor, list):
return [tensor2im(x, imtype, normalize) for x in image_tensor]
if image_tensor.dim() == 5 or image_tensor.dim() == 4:
return [tensor2im(image_tensor[idx], imtype, normalize)
for idx in range(image_tensor.size(0))]
if image_tensor.dim() == 3:
image_numpy = image_tensor.cpu().float().numpy()
if normalize:
image_numpy = (np.transpose(
image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
else:
image_numpy = np.transpose(image_numpy, (1, 2, 0)) * 255.0
image_numpy = np.clip(image_numpy, 0, 255)
if image_numpy.shape[2] == 1 and three_channel_output:
image_numpy = np.repeat(image_numpy, 3, axis=2)
elif image_numpy.shape[2] > 3:
image_numpy = image_numpy[:, :, :3]
return image_numpy.astype(imtype)
def tensor2label(segmap, n_label=None, imtype=np.uint8,
colorize=True, output_normalized_tensor=False):
r"""Convert segmentation mask tensor to color image.
Args:
segmap (tensor) of
If tensor then (NxCxHxW) or (NxTxCxHxW) or (CxHxW).
n_label (int): If None, then segmap.size(0).
imtype (np.dtype): Type of output image.
colorize (bool): Put colors in.
Returns:
(numpy.ndarray or normalized torch image).
"""
if segmap is None:
return None
if isinstance(segmap, list):
return [tensor2label(x, n_label,
imtype, colorize,
output_normalized_tensor) for x in segmap]
if segmap.dim() == 5 or segmap.dim() == 4:
return [tensor2label(segmap[idx], n_label,
imtype, colorize,
output_normalized_tensor)
for idx in range(segmap.size(0))]
segmap = segmap.float()
if not output_normalized_tensor:
segmap = segmap.cpu()
if n_label is None:
n_label = segmap.size(0)
if n_label > 1:
segmap = segmap.max(0, keepdim=True)[1]
if output_normalized_tensor:
if n_label == 0:
segmap = Colorize(256)(segmap).to('cuda')
else:
segmap = Colorize(n_label)(segmap).to('cuda')
return 2 * (segmap.float() / 255) - 1
else:
if colorize:
segmap = Colorize(n_label)(segmap)
segmap = np.transpose(segmap.numpy(), (1, 2, 0))
else:
segmap = segmap.cpu().numpy()
return segmap.astype(imtype)
def tensor2flow(tensor, imtype=np.uint8):
r"""Convert flow tensor to color image.
Args:
tensor (tensor) of
If tensor then (NxCxHxW) or (NxTxCxHxW) or (CxHxW).
imtype (np.dtype): Type of output image.
Returns:
(numpy.ndarray or normalized torch image).
"""
if tensor is None:
return None
if isinstance(tensor, list):
tensor = [t for t in tensor if t is not None]
if not tensor:
return None
return [tensor2flow(t, imtype) for t in tensor]
if tensor.dim() == 5 or tensor.dim() == 4:
return [tensor2flow(tensor[b]) for b in range(tensor.size(0))]
tensor = tensor.detach().cpu().float().numpy()
tensor = np.transpose(tensor, (1, 2, 0))
hsv = np.zeros((tensor.shape[0], tensor.shape[1], 3), dtype=imtype)
hsv[:, :, 0] = 255
hsv[:, :, 1] = 255
mag, ang = cv2.cartToPolar(tensor[..., 0], tensor[..., 1])
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
rgb = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
return rgb
def plot_keypoints(image, keypoints, normalize=True):
r"""Plot keypoints on image.
Args:
image (PIL.Image, or numpy.ndarray, or torch.Tensor): Input image.
keypoints (np.ndarray or torch.Tensor, Nx2): Keypoint locations.
normalize (bool): Whether to normalize the image or not.
"""
if isinstance(image, PIL.Image.Image):
image = np.array(image)
if isinstance(image, torch.Tensor):
image = tensor2im(image, normalize=normalize)
if isinstance(image, np.ndarray):
assert image.ndim == 3
assert image.shape[-1] == 1 or image.shape[-1] == 3
if isinstance(keypoints, torch.Tensor):
keypoints = keypoints.cpu().numpy()
assert keypoints.ndim == 2 and keypoints.shape[1] == 2
cv2_image = np.ascontiguousarray(image[:, :, ::-1]) # RGB to BGR.
for idx in range(keypoints.shape[0]):
keypoint = np.round(keypoints[idx]).astype(np.int)
cv2_image = cv2.circle(cv2_image, tuple(keypoint),
5, (0, 255, 0), -1)
image = np.ascontiguousarray(cv2_image[:, :, ::-1])
return image
def labelcolormap(N):
r"""Create colors for segmentation label ids.
Args:
N (int): Number of labels.
"""
if N == 35: # GTA/cityscape train
cmap = np.array([(0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0),
(111, 74, 0), (81, 0, 81), (128, 64, 128),
(244, 35, 232), (250, 170, 160), (230, 150, 140),
(70, 70, 70), (102, 102, 156), (190, 153, 153),
(180, 165, 180), (150, 100, 100), (150, 120, 90),
(153, 153, 153), (153, 153, 153), (250, 170, 30),
(220, 220, 0), (107, 142, 35), (152, 251, 152),
(70, 130, 180), (220, 20, 60), (255, 0, 0),
(0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 0, 90),
(0, 0, 110), (0, 80, 100), (0, 0, 230), (119, 11, 32),
(0, 0, 142)],
dtype=np.uint8)
elif N == 20: # GTA/cityscape eval
cmap = np.array([(128, 64, 128), (244, 35, 232), (70, 70, 70),
(102, 102, 156), (190, 153, 153), (153, 153, 153),
(250, 170, 30), (220, 220, 0), (107, 142, 35),
(152, 251, 152), (220, 20, 60), (255, 0, 0),
(0, 0, 142), (0, 0, 70), (0, 60, 100), (0, 80, 100),
(0, 0, 230), (119, 11, 32), (70, 130, 180), (0, 0, 0)],
dtype=np.uint8)
else:
cmap = np.zeros([N, 3]).astype(np.uint8)
for i in range(N):
r, g, b = np.zeros(3)
for j in range(8):
r = r + (1 << (7 - j)) * ((i & (1 << (3 * j))) >> (3 * j))
g = g + (1 << (7 - j)) * \
((i & (1 << (3 * j + 1))) >> (3 * j + 1))
b = b + (1 << (7 - j)) * \
((i & (1 << (3 * j + 2))) >> (3 * j + 2))
cmap[i, :] = np.array([r, g, b])
return cmap
class Colorize(object):
"""Class to colorize segmentation maps."""
def __init__(self, n=35):
self.cmap = labelcolormap(n)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, seg_map):
r"""
Args:
seg_map (tensor): Input Segmentation maps to be colorized.
"""
size = seg_map.size()
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
for label in range(0, len(self.cmap)):
mask = (label == seg_map[0]).cpu()
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
return color_image
def plot_keypoints_on_black(resize_h, resize_w, crop_h, crop_w, is_flipped,
cfgdata, keypoints):
r"""Plot keypoints on black image.
Args:
resize_h (int): Height to be resized to.
resize_w (int): Width to be resized to.
crop_h (int): Height of the cropping.
crop_w (int): Width of the cropping.
is_flipped (bool): If image is a flipped version.
cfgdata (obj): Data configuration object.
keypoints (np.ndarray): Keypoint locations. Shape of
(Nx2) or (TxNx2).
Returns:
(list of np.ndarray): List of images (output_h, output_w, 3).
"""
if keypoints.ndim == 2 and keypoints.shape[1] == 2:
keypoints = keypoints[np.newaxis, ...]
outputs = []
for t_idx in range(keypoints.shape[0]):
cv2_image = np.zeros((crop_h, crop_w, 3)).astype(np.uint8)
for idx in range(keypoints[t_idx].shape[0]):
keypoint = np.round(keypoints[t_idx][idx]).astype(np.int)
cv2_image = cv2.circle(cv2_image, tuple(keypoint),
5, (0, 255, 0), -1)
image = np.ascontiguousarray(cv2_image[:, :, ::-1]) # BGR to RGB.
outputs.append(image)
return outputs
|