File size: 21,389 Bytes
f670afc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES.  All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import os
import time

import imageio
import numpy as np
import torch
from tqdm import tqdm

from imaginaire.losses import MaskedL1Loss
from imaginaire.model_utils.fs_vid2vid import concat_frames, resample
from imaginaire.trainers.vid2vid import Trainer as Vid2VidTrainer
from imaginaire.utils.distributed import is_master
from imaginaire.utils.distributed import master_only_print as print
from imaginaire.utils.misc import split_labels, to_cuda
from imaginaire.utils.visualization import tensor2flow, tensor2im


class Trainer(Vid2VidTrainer):
    r"""Initialize world consistent vid2vid trainer.

    Args:
        cfg (obj): Global configuration.
        net_G (obj): Generator network.
        net_D (obj): Discriminator network.
        opt_G (obj): Optimizer for the generator network.
        opt_D (obj): Optimizer for the discriminator network.
        sch_G (obj): Scheduler for the generator optimizer.
        sch_D (obj): Scheduler for the discriminator optimizer.
        train_data_loader (obj): Train data loader.
        val_data_loader (obj): Validation data loader.
    """

    def __init__(self, cfg, net_G, net_D, opt_G, opt_D, sch_G, sch_D,
                 train_data_loader, val_data_loader):
        super(Trainer, self).__init__(cfg, net_G, net_D, opt_G,
                                      opt_D, sch_G, sch_D,
                                      train_data_loader, val_data_loader)
        self.guidance_start_after = getattr(cfg.gen.guidance, 'start_from', 0)
        self.train_data_loader = train_data_loader

    def _define_custom_losses(self):
        r"""All other custom losses are defined here."""
        # Setup the guidance loss.
        self.criteria['Guidance'] = MaskedL1Loss(normalize_over_valid=True)
        self.weights['Guidance'] = self.cfg.trainer.loss_weight.guidance

    def start_of_iteration(self, data, current_iteration):
        r"""Things to do before an iteration.

        Args:
            data (dict): Data used for the current iteration.
            current_iteration (int): Current iteration number.
        """
        self.net_G_module.reset_renderer(is_flipped_input=data['is_flipped'])
        # Keep unprojections on cpu to prevent unnecessary transfer.
        unprojections = data.pop('unprojections')
        data = to_cuda(data)
        data['unprojections'] = unprojections

        self.current_iteration = current_iteration
        if not self.is_inference:
            self.net_D.train()
        self.net_G.train()
        self.start_iteration_time = time.time()
        return data

    def reset(self):
        r"""Reset the trainer (for inference) at the beginning of a sequence."""
        # Inference time.
        self.net_G_module.reset_renderer(is_flipped_input=False)

        # print('Resetting trainer.')
        self.net_G_output = self.data_prev = None
        self.t = 0

        test_in_model_average_mode = getattr(
            self, 'test_in_model_average_mode', False)
        if test_in_model_average_mode:
            if hasattr(self.net_G.module.averaged_model, 'reset'):
                self.net_G.module.averaged_model.reset()
        else:
            if hasattr(self.net_G.module, 'reset'):
                self.net_G.module.reset()

    def create_sequence_output_dir(self, output_dir, key):
        r"""Create output subdir for this sequence.

        Args:
            output_dir (str): Root output dir.
            key (str): LMDB key which contains sequence name and file name.
            Returns:
            output_dir (str): Output subdir for this sequence.
            seq_name (str): Name of this sequence.
        """
        seq_dir = '/'.join(key.split('/')[:-1])
        output_dir = os.path.join(output_dir, seq_dir)
        os.makedirs(output_dir, exist_ok=True)
        os.makedirs(output_dir + '/all', exist_ok=True)
        os.makedirs(output_dir + '/fake', exist_ok=True)
        seq_name = seq_dir.replace('/', '-')
        return output_dir, seq_name

    def test(self, test_data_loader, root_output_dir, inference_args):
        r"""Run inference on all sequences.

        Args:
            test_data_loader (object): Test data loader.
            root_output_dir (str): Location to dump outputs.
            inference_args (optional): Optional args.
        """

        # Go over all sequences.
        loader = test_data_loader
        num_inference_sequences = loader.dataset.num_inference_sequences()
        for sequence_idx in range(num_inference_sequences):
            loader.dataset.set_inference_sequence_idx(sequence_idx)
            print('Seq id: %d, Seq length: %d' %
                  (sequence_idx + 1, len(loader)))

            # Reset model at start of new inference sequence.
            self.reset()
            self.sequence_length = len(loader)

            # Go over all frames of this sequence.
            video = []
            for idx, data in enumerate(tqdm(loader)):
                key = data['key']['images'][0][0]
                filename = key.split('/')[-1]

                # Create output dir for this sequence.
                if idx == 0:
                    output_dir, seq_name = \
                        self.create_sequence_output_dir(root_output_dir, key)
                    video_path = os.path.join(output_dir, '..', seq_name)

                # Get output, and save all vis to all/.
                data['img_name'] = filename
                data = to_cuda(data)
                output = self.test_single(data, output_dir=output_dir + '/all')

                # Dump just the fake image here.
                fake = tensor2im(output['fake_images'])[0]
                video.append(fake)
                imageio.imsave(output_dir + '/fake/%s.jpg' % (filename), fake)

            # Save as mp4 and gif.
            imageio.mimsave(video_path + '.mp4', video, fps=15)

    def test_single(self, data, output_dir=None, save_fake_only=False):
        r"""The inference function. If output_dir exists, also save the
        output image.

        Args:
            data (dict): Training data at the current iteration.
            output_dir (str): Save image directory.
            save_fake_only (bool): Only save the fake output image.
        """
        if self.is_inference and self.cfg.trainer.model_average_config.enabled:
            test_in_model_average_mode = True
        else:
            test_in_model_average_mode = getattr(
                self, 'test_in_model_average_mode', False)
        data_t = self.get_data_t(data, self.net_G_output, self.data_prev, 0)
        if self.sequence_length > 1:
            self.data_prev = data_t

        # Generator forward.
        # Reset renderer if first time step.
        if self.t == 0:
            self.net_G_module.reset_renderer(
                is_flipped_input=data['is_flipped'])
        with torch.no_grad():
            if test_in_model_average_mode:
                net_G = self.net_G.module.averaged_model
            else:
                net_G = self.net_G
            self.net_G_output = net_G(data_t)

        if output_dir is not None:
            if save_fake_only:
                image_grid = tensor2im(self.net_G_output['fake_images'])[0]
            else:
                vis_images = self.get_test_output_images(data)
                image_grid = np.hstack([np.vstack(im) for im in
                                        vis_images if im is not None])
            if 'img_name' in data:
                save_name = data['img_name'].split('.')[0] + '.jpg'
            else:
                save_name = '%04d.jpg' % self.t
            output_filename = os.path.join(output_dir, save_name)
            os.makedirs(output_dir, exist_ok=True)
            imageio.imwrite(output_filename, image_grid)
            self.t += 1

        return self.net_G_output

    def get_test_output_images(self, data):
        r"""Get the visualization output of test function.

        Args:
            data (dict): Training data at the current iteration.
        """
        # Visualize labels.
        label_lengths = self.val_data_loader.dataset.get_label_lengths()
        labels = split_labels(data['label'], label_lengths)
        vis_labels = []
        for key, value in labels.items():
            if key == 'seg_maps':
                vis_labels.append(self.visualize_label(value[:, -1]))
            else:
                vis_labels.append(tensor2im(value[:, -1]))

        # Get gt image.
        im = tensor2im(data['images'][:, -1])

        # Get guidance image and masks.
        if self.net_G_output['guidance_images_and_masks'] is not None:
            guidance_image = tensor2im(
                self.net_G_output['guidance_images_and_masks'][:, :3])
            guidance_mask = tensor2im(
                self.net_G_output['guidance_images_and_masks'][:, 3:4],
                normalize=False)
        else:
            guidance_image = [np.zeros_like(item) for item in im]
            guidance_mask = [np.zeros_like(item) for item in im]

        # Create output.
        vis_images = [
            *vis_labels,
            im,
            guidance_image, guidance_mask,
            tensor2im(self.net_G_output['fake_images']),
        ]
        return vis_images

    def gen_frames(self, data, use_model_average=False):
        r"""Generate a sequence of frames given a sequence of data.

        Args:
            data (dict): Training data at the current iteration.
            use_model_average (bool): Whether to use model average
                for update or not.
        """
        net_G_output = None  # Previous generator output.
        data_prev = None  # Previous data.
        if use_model_average:
            net_G = self.net_G.module.averaged_model
        else:
            net_G = self.net_G

        # Iterate through the length of sequence.
        self.net_G_module.reset_renderer(is_flipped_input=data['is_flipped'])

        all_info = {'inputs': [], 'outputs': []}
        for t in range(self.sequence_length):
            # Get the data at the current time frame.
            data_t = self.get_data_t(data, net_G_output, data_prev, t)
            data_prev = data_t

            # Generator forward.
            with torch.no_grad():
                net_G_output = net_G(data_t)

            # Do any postprocessing if necessary.
            data_t, net_G_output = self.post_process(data_t, net_G_output)

            if t == 0:
                # Get the output at beginning of sequence for visualization.
                first_net_G_output = net_G_output

            all_info['inputs'].append(data_t)
            all_info['outputs'].append(net_G_output)

        return first_net_G_output, net_G_output, all_info

    def _get_custom_gen_losses(self, data_t, net_G_output, net_D_output):
        r"""All other custom generator losses go here.

        Args:
            data_t (dict): Training data at the current time t.
            net_G_output (dict): Output of the generator.
            net_D_output (dict): Output of the discriminator.
        """
        # Compute guidance loss.
        if net_G_output['guidance_images_and_masks'] is not None:
            guidance_image = net_G_output['guidance_images_and_masks'][:, :3]
            guidance_mask = net_G_output['guidance_images_and_masks'][:, 3:]
            self.gen_losses['Guidance'] = self.criteria['Guidance'](
                net_G_output['fake_images'], guidance_image, guidance_mask)
        else:
            self.gen_losses['Guidance'] = self.Tensor(1).fill_(0)

    def get_data_t(self, data, net_G_output, data_prev, t):
        r"""Get data at current time frame given the sequence of data.

        Args:
            data (dict): Training data for current iteration.
            net_G_output (dict): Output of the generator (for previous frame).
            data_prev (dict): Data for previous frame.
            t (int): Current time.
        """
        label = data['label'][:, t]
        image = data['images'][:, t]

        # Get keypoint mapping.
        unprojection = None
        if t >= self.guidance_start_after:
            if 'unprojections' in data:
                try:
                    # Remove unwanted padding.
                    unprojection = {}
                    for key, value in data['unprojections'].items():
                        value = value[0, t].cpu().numpy()
                        length = value[-1][0]
                        unprojection[key] = value[:length]
                except:  # noqa
                    pass

        if data_prev is not None:
            # Concat previous labels/fake images to the ones before.
            num_frames_G = self.cfg.data.num_frames_G
            prev_labels = concat_frames(data_prev['prev_labels'],
                                        data_prev['label'], num_frames_G - 1)
            prev_images = concat_frames(
                data_prev['prev_images'],
                net_G_output['fake_images'].detach(), num_frames_G - 1)
        else:
            prev_labels = prev_images = None

        data_t = dict()
        data_t['label'] = label
        data_t['image'] = image
        data_t['prev_labels'] = prev_labels
        data_t['prev_images'] = prev_images
        data_t['real_prev_image'] = data['images'][:, t - 1] if t > 0 else None
        data_t['unprojection'] = unprojection
        return data_t

    def save_image(self, path, data):
        r"""Save the output images to path.
        Note when the generate_raw_output is FALSE. Then,
        first_net_G_output['fake_raw_images'] is None and will not be displayed.
        In model average mode, we will plot the flow visualization twice.

        Args:
            path (str): Save path.
            data (dict): Training data for current iteration.
        """
        self.net_G.eval()
        if self.cfg.trainer.model_average_config.enabled:
            self.net_G.module.averaged_model.eval()
        self.net_G_output = None
        with torch.no_grad():
            first_net_G_output, net_G_output, all_info = self.gen_frames(data)
            if self.cfg.trainer.model_average_config.enabled:
                first_net_G_output_avg, net_G_output_avg = self.gen_frames(
                    data, use_model_average=True)

        # Visualize labels.
        label_lengths = self.train_data_loader.dataset.get_label_lengths()
        labels = split_labels(data['label'], label_lengths)
        vis_labels_start, vis_labels_end = [], []
        for key, value in labels.items():
            if 'seg_maps' in key:
                vis_labels_start.append(self.visualize_label(value[:, -1]))
                vis_labels_end.append(self.visualize_label(value[:, 0]))
            else:
                normalize = self.train_data_loader.dataset.normalize[key]
                vis_labels_start.append(
                    tensor2im(value[:, -1], normalize=normalize))
                vis_labels_end.append(
                    tensor2im(value[:, 0], normalize=normalize))

        if is_master():
            vis_images = [
                *vis_labels_start,
                tensor2im(data['images'][:, -1]),
                tensor2im(net_G_output['fake_images']),
                tensor2im(net_G_output['fake_raw_images'])]
            if self.cfg.trainer.model_average_config.enabled:
                vis_images += [
                    tensor2im(net_G_output_avg['fake_images']),
                    tensor2im(net_G_output_avg['fake_raw_images'])]

            if self.sequence_length > 1:
                if net_G_output['guidance_images_and_masks'] is not None:
                    guidance_image = tensor2im(
                        net_G_output['guidance_images_and_masks'][:, :3])
                    guidance_mask = tensor2im(
                        net_G_output['guidance_images_and_masks'][:, 3:4],
                        normalize=False)
                else:
                    im = tensor2im(data['images'][:, -1])
                    guidance_image = [np.zeros_like(item) for item in im]
                    guidance_mask = [np.zeros_like(item) for item in im]
                vis_images += [guidance_image, guidance_mask]

                vis_images_first = [
                    *vis_labels_end,
                    tensor2im(data['images'][:, 0]),
                    tensor2im(first_net_G_output['fake_images']),
                    tensor2im(first_net_G_output['fake_raw_images']),
                    [np.zeros_like(item) for item in guidance_image],
                    [np.zeros_like(item) for item in guidance_mask]
                ]
                if self.cfg.trainer.model_average_config.enabled:
                    vis_images_first += [
                        tensor2im(first_net_G_output_avg['fake_images']),
                        tensor2im(first_net_G_output_avg['fake_raw_images'])]

                if self.use_flow:
                    flow_gt, conf_gt = self.criteria['Flow'].flowNet(
                        data['images'][:, -1], data['images'][:, -2])
                    warped_image_gt = resample(data['images'][:, -1], flow_gt)
                    vis_images_first += [
                        tensor2flow(flow_gt),
                        tensor2im(conf_gt, normalize=False),
                        tensor2im(warped_image_gt),
                    ]
                    vis_images += [
                        tensor2flow(net_G_output['fake_flow_maps']),
                        tensor2im(net_G_output['fake_occlusion_masks'],
                                  normalize=False),
                        tensor2im(net_G_output['warped_images']),
                    ]
                    if self.cfg.trainer.model_average_config.enabled:
                        vis_images_first += [
                            tensor2flow(flow_gt),
                            tensor2im(conf_gt, normalize=False),
                            tensor2im(warped_image_gt),
                        ]
                        vis_images += [
                            tensor2flow(net_G_output_avg['fake_flow_maps']),
                            tensor2im(net_G_output_avg['fake_occlusion_masks'],
                                      normalize=False),
                            tensor2im(net_G_output_avg['warped_images'])]

                vis_images = [[np.vstack((im_first, im))
                               for im_first, im in zip(imgs_first, imgs)]
                              for imgs_first, imgs in zip(vis_images_first,
                                                          vis_images)
                              if imgs is not None]

            image_grid = np.hstack([np.vstack(im) for im in
                                    vis_images if im is not None])

            print('Save output images to {}'.format(path))
            os.makedirs(os.path.dirname(path), exist_ok=True)
            imageio.imwrite(path, image_grid)

            # Gather all inputs and outputs for dumping into video.
            if self.sequence_length > 1:
                input_images, output_images, output_guidance = [], [], []
                for item in all_info['inputs']:
                    input_images.append(tensor2im(item['image'])[0])
                for item in all_info['outputs']:
                    output_images.append(tensor2im(item['fake_images'])[0])
                    if item['guidance_images_and_masks'] is not None:
                        output_guidance.append(tensor2im(
                            item['guidance_images_and_masks'][:, :3])[0])
                    else:
                        output_guidance.append(np.zeros_like(output_images[-1]))

                imageio.mimwrite(os.path.splitext(path)[0] + '.mp4',
                                 output_images, fps=2, macro_block_size=None)
                imageio.mimwrite(os.path.splitext(path)[0] + '_guidance.mp4',
                                 output_guidance, fps=2, macro_block_size=None)

            # for idx, item in enumerate(output_guidance):
            #     imageio.imwrite(os.path.splitext(
            #         path)[0] + '_guidance_%d.jpg' % (idx), item)
            # for idx, item in enumerate(input_images):
            #     imageio.imwrite(os.path.splitext(
            #         path)[0] + '_input_%d.jpg' % (idx), item)

        self.net_G.float()

    def _compute_fid(self):
        r"""Compute fid. Ignore for faster training."""
        return None

    def load_checkpoint(self, cfg, checkpoint_path, resume=None, load_sch=True):
        r"""Save network weights, optimizer parameters, scheduler parameters
        in the checkpoint.

        Args:
            cfg (obj): Global configuration.
            checkpoint_path (str): Path to the checkpoint.
        """
        # Create the single image model.
        if self.train_data_loader is None:
            load_single_image_model_weights = False
        else:
            load_single_image_model_weights = True
        self.net_G.module._init_single_image_model(
            load_weights=load_single_image_model_weights)

        # Call the original super function.
        return super().load_checkpoint(cfg, checkpoint_path, resume, load_sch)