Spaces:
Runtime error
Runtime error
File size: 13,233 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
# Copyright (C) 2020 NVIDIA Corporation. All rights reserved
import functools
import warnings
import numpy as np
import torch
import torch.nn as nn
from imaginaire.layers import Conv2dBlock
from imaginaire.utils.data import (get_paired_input_image_channel_number,
get_paired_input_label_channel_number)
from imaginaire.utils.distributed import master_only_print as print
class Discriminator(nn.Module):
r"""Multi-resolution patch discriminator.
Args:
dis_cfg (obj): Discriminator definition part of the yaml config
file.
data_cfg (obj): Data definition part of the yaml config file.
"""
def __init__(self, dis_cfg, data_cfg):
super(Discriminator, self).__init__()
print('Multi-resolution patch discriminator initialization.')
# We assume the first datum is the ground truth image.
image_channels = get_paired_input_image_channel_number(data_cfg)
# Calculate number of channels in the input label.
num_labels = get_paired_input_label_channel_number(data_cfg)
# Build the discriminator.
kernel_size = getattr(dis_cfg, 'kernel_size', 3)
num_filters = getattr(dis_cfg, 'num_filters', 128)
max_num_filters = getattr(dis_cfg, 'max_num_filters', 512)
num_discriminators = getattr(dis_cfg, 'num_discriminators', 2)
num_layers = getattr(dis_cfg, 'num_layers', 5)
activation_norm_type = getattr(dis_cfg, 'activation_norm_type', 'none')
weight_norm_type = getattr(dis_cfg, 'weight_norm_type', 'spectral')
print('\tBase filter number: %d' % num_filters)
print('\tNumber of discriminators: %d' % num_discriminators)
print('\tNumber of layers in a discriminator: %d' % num_layers)
print('\tWeight norm type: %s' % weight_norm_type)
num_input_channels = image_channels + num_labels
self.model = MultiResPatchDiscriminator(num_discriminators,
kernel_size,
num_input_channels,
num_filters,
num_layers,
max_num_filters,
activation_norm_type,
weight_norm_type)
print('Done with the Multi-resolution patch '
'discriminator initialization.')
def forward(self, data, net_G_output, real=True):
r"""SPADE Generator forward.
Args:
data (dict):
- data (N x C1 x H x W tensor) : Ground truth images.
- label (N x C2 x H x W tensor) : Semantic representations.
- z (N x style_dims tensor): Gaussian random noise.
net_G_output (dict):
fake_images (N x C1 x H x W tensor) : Fake images.
real (bool): If ``True``, also classifies real images. Otherwise it
only classifies generated images to save computation during the
generator update.
Returns:
(tuple):
- real_outputs (list): list of output tensors produced by
- individual patch discriminators for real images.
- real_features (list): list of lists of features produced by
individual patch discriminators for real images.
- fake_outputs (list): list of output tensors produced by
individual patch discriminators for fake images.
- fake_features (list): list of lists of features produced by
individual patch discriminators for fake images.
"""
output_x = dict()
if 'label' in data:
fake_input_x = torch.cat(
(data['label'], net_G_output['fake_images']), 1)
else:
fake_input_x = net_G_output['fake_images']
output_x['fake_outputs'], output_x['fake_features'], _ = \
self.model.forward(fake_input_x)
if real:
if 'label' in data:
real_input_x = torch.cat(
(data['label'], data['images']), 1)
else:
real_input_x = data['images']
output_x['real_outputs'], output_x['real_features'], _ = \
self.model.forward(real_input_x)
return output_x
class MultiResPatchDiscriminator(nn.Module):
r"""Multi-resolution patch discriminator.
Args:
num_discriminators (int): Num. of discriminators (one per scale).
kernel_size (int): Convolution kernel size.
num_image_channels (int): Num. of channels in the real/fake image.
num_filters (int): Num. of base filters in a layer.
num_layers (int): Num. of layers for the patch discriminator.
max_num_filters (int): Maximum num. of filters in a layer.
activation_norm_type (str): batch_norm/instance_norm/none/....
weight_norm_type (str): none/spectral_norm/weight_norm
"""
def __init__(self,
num_discriminators=3,
kernel_size=3,
num_image_channels=3,
num_filters=64,
num_layers=4,
max_num_filters=512,
activation_norm_type='',
weight_norm_type='',
**kwargs):
super().__init__()
for key in kwargs:
if key != 'type' and key != 'patch_wise':
warnings.warn(
"Discriminator argument {} is not used".format(key))
self.discriminators = nn.ModuleList()
for i in range(num_discriminators):
net_discriminator = NLayerPatchDiscriminator(
kernel_size,
num_image_channels,
num_filters,
num_layers,
max_num_filters,
activation_norm_type,
weight_norm_type)
self.discriminators.append(net_discriminator)
print('Done with the Multi-resolution patch '
'discriminator initialization.')
def forward(self, input_x):
r"""Multi-resolution patch discriminator forward.
Args:
input_x (tensor) : Input images.
Returns:
(tuple):
- output_list (list): list of output tensors produced by
individual patch discriminators.
- features_list (list): list of lists of features produced by
individual patch discriminators.
- input_list (list): list of downsampled input images.
"""
input_list = []
output_list = []
features_list = []
input_downsampled = input_x
for net_discriminator in self.discriminators:
input_list.append(input_downsampled)
output, features = net_discriminator(input_downsampled)
output_list.append(output)
features_list.append(features)
input_downsampled = nn.functional.interpolate(
input_downsampled, scale_factor=0.5, mode='bilinear',
align_corners=True, recompute_scale_factor=True)
return output_list, features_list, input_list
class WeightSharedMultiResPatchDiscriminator(nn.Module):
r"""Multi-resolution patch discriminator with shared weights.
Args:
num_discriminators (int): Num. of discriminators (one per scale).
kernel_size (int): Convolution kernel size.
num_image_channels (int): Num. of channels in the real/fake image.
num_filters (int): Num. of base filters in a layer.
num_layers (int): Num. of layers for the patch discriminator.
max_num_filters (int): Maximum num. of filters in a layer.
activation_norm_type (str): batch_norm/instance_norm/none/....
weight_norm_type (str): none/spectral_norm/weight_norm
"""
def __init__(self,
num_discriminators=3,
kernel_size=3,
num_image_channels=3,
num_filters=64,
num_layers=4,
max_num_filters=512,
activation_norm_type='',
weight_norm_type='',
**kwargs):
super().__init__()
for key in kwargs:
if key != 'type' and key != 'patch_wise':
warnings.warn(
"Discriminator argument {} is not used".format(key))
self.num_discriminators = num_discriminators
self.discriminator = NLayerPatchDiscriminator(
kernel_size,
num_image_channels,
num_filters,
num_layers,
max_num_filters,
activation_norm_type,
weight_norm_type)
print('Done with the Weight-Shared Multi-resolution patch '
'discriminator initialization.')
def forward(self, input_x):
r"""Multi-resolution patch discriminator forward.
Args:
input_x (tensor) : Input images.
Returns:
(tuple):
- output_list (list): list of output tensors produced by
individual patch discriminators.
- features_list (list): list of lists of features produced by
individual patch discriminators.
- input_list (list): list of downsampled input images.
"""
input_list = []
output_list = []
features_list = []
input_downsampled = input_x
for i in range(self.num_discriminators):
input_list.append(input_downsampled)
output, features = self.discriminator(input_downsampled)
output_list.append(output)
features_list.append(features)
input_downsampled = nn.functional.interpolate(
input_downsampled, scale_factor=0.5, mode='bilinear',
align_corners=True)
return output_list, features_list, input_list
class NLayerPatchDiscriminator(nn.Module):
r"""Patch Discriminator constructor.
Args:
kernel_size (int): Convolution kernel size.
num_input_channels (int): Num. of channels in the real/fake image.
num_filters (int): Num. of base filters in a layer.
num_layers (int): Num. of layers for the patch discriminator.
max_num_filters (int): Maximum num. of filters in a layer.
activation_norm_type (str): batch_norm/instance_norm/none/....
weight_norm_type (str): none/spectral_norm/weight_norm
"""
def __init__(self,
kernel_size,
num_input_channels,
num_filters,
num_layers,
max_num_filters,
activation_norm_type,
weight_norm_type):
super(NLayerPatchDiscriminator, self).__init__()
self.num_layers = num_layers
padding = int(np.floor((kernel_size - 1.0) / 2))
nonlinearity = 'leakyrelu'
base_conv2d_block = \
functools.partial(Conv2dBlock,
kernel_size=kernel_size,
padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity=nonlinearity,
# inplace_nonlinearity=True,
order='CNA')
layers = [[base_conv2d_block(
num_input_channels, num_filters, stride=2)]]
for n in range(num_layers):
num_filters_prev = num_filters
num_filters = min(num_filters * 2, max_num_filters)
stride = 2 if n < (num_layers - 1) else 1
layers += [[base_conv2d_block(num_filters_prev, num_filters,
stride=stride)]]
layers += [[Conv2dBlock(num_filters, 1,
3, 1,
padding,
weight_norm_type=weight_norm_type)]]
for n in range(len(layers)):
setattr(self, 'layer' + str(n), nn.Sequential(*layers[n]))
def forward(self, input_x):
r"""Patch Discriminator forward.
Args:
input_x (N x C x H1 x W2 tensor): Concatenation of images and
semantic representations.
Returns:
(tuple):
- output (N x 1 x H2 x W2 tensor): Discriminator output value.
Before the sigmoid when using NSGAN.
- features (list): lists of tensors of the intermediate
activations.
"""
res = [input_x]
for n in range(self.num_layers + 2):
layer = getattr(self, 'layer' + str(n))
x = res[-1]
res.append(layer(x))
output = res[-1]
features = res[1:-1]
return output, features
|