Spaces:
Runtime error
Runtime error
File size: 12,308 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
from imaginaire.layers import Conv2dBlock
from imaginaire.utils.data import get_paired_input_label_channel_number, get_paired_input_image_channel_number
from imaginaire.utils.distributed import master_only_print as print
class Discriminator(nn.Module):
r"""Multi-resolution patch discriminator. Based on FPSE discriminator but with N+1 labels.
Args:
dis_cfg (obj): Discriminator definition part of the yaml config file.
data_cfg (obj): Data definition part of the yaml config file.
"""
def __init__(self, dis_cfg, data_cfg):
super(Discriminator, self).__init__()
# We assume the first datum is the ground truth image.
image_channels = get_paired_input_image_channel_number(data_cfg)
# Calculate number of channels in the input label.
num_labels = get_paired_input_label_channel_number(data_cfg)
self.use_label = getattr(dis_cfg, 'use_label', True)
# Override number of input channels
if hasattr(dis_cfg, 'image_channels'):
image_channels = dis_cfg.image_channels
if hasattr(dis_cfg, 'num_labels'):
num_labels = dis_cfg.num_labels
else:
# We assume the first datum is the ground truth image.
image_channels = get_paired_input_image_channel_number(data_cfg)
# Calculate number of channels in the input label.
num_labels = get_paired_input_label_channel_number(data_cfg)
if not self.use_label:
num_labels = 2 # ignore + true
# Build the discriminator.
num_filters = getattr(dis_cfg, 'num_filters', 128)
weight_norm_type = getattr(dis_cfg, 'weight_norm_type', 'spectral')
fpse_kernel_size = getattr(dis_cfg, 'fpse_kernel_size', 3)
fpse_activation_norm_type = getattr(dis_cfg,
'fpse_activation_norm_type',
'none')
do_multiscale = getattr(dis_cfg, 'do_multiscale', False)
smooth_resample = getattr(dis_cfg, 'smooth_resample', False)
no_label_except_largest_scale = getattr(dis_cfg, 'no_label_except_largest_scale', False)
self.fpse_discriminator = FPSEDiscriminator(
image_channels,
num_labels,
num_filters,
fpse_kernel_size,
weight_norm_type,
fpse_activation_norm_type,
do_multiscale,
smooth_resample,
no_label_except_largest_scale)
def _single_forward(self, input_label, input_image, weights):
output_list, features_list = self.fpse_discriminator(input_image, input_label, weights)
return output_list, [features_list]
def forward(self, data, net_G_output, weights=None, incl_real=False, incl_pseudo_real=False):
r"""GANcraft discriminator forward.
Args:
data (dict):
- data (N x C1 x H x W tensor) : Ground truth images.
- label (N x C2 x H x W tensor) : Semantic representations.
- z (N x style_dims tensor): Gaussian random noise.
net_G_output (dict):
- fake_images (N x C1 x H x W tensor) : Fake images.
Returns:
output_x (dict):
- real_outputs (list): list of output tensors produced by
individual patch discriminators for real images.
- real_features (list): list of lists of features produced by
individual patch discriminators for real images.
- fake_outputs (list): list of output tensors produced by
individual patch discriminators for fake images.
- fake_features (list): list of lists of features produced by
individual patch discriminators for fake images.
"""
output_x = dict()
# Fake.
fake_images = net_G_output['fake_images']
if self.use_label:
fake_labels = data['fake_masks']
else:
fake_labels = torch.zeros([fake_images.size(0), 2, fake_images.size(
2), fake_images.size(3)], device=fake_images.device, dtype=fake_images.dtype)
fake_labels[:, 1, :, :] = 1
output_x['fake_outputs'], output_x['fake_features'] = \
self._single_forward(fake_labels, fake_images, None)
# Real.
if incl_real:
real_images = data['images']
if self.use_label:
real_labels = data['real_masks']
else:
real_labels = torch.zeros([real_images.size(0), 2, real_images.size(
2), real_images.size(3)], device=real_images.device, dtype=real_images.dtype)
real_labels[:, 1, :, :] = 1
output_x['real_outputs'], output_x['real_features'] = \
self._single_forward(real_labels, real_images, None)
# pseudo-Real.
if incl_pseudo_real:
preal_images = data['pseudo_real_img']
preal_labels = data['fake_masks']
if not self.use_label:
preal_labels = torch.zeros([preal_images.size(0), 2, preal_images.size(
2), preal_images.size(3)], device=preal_images.device, dtype=preal_images.dtype)
preal_labels[:, 1, :, :] = 1
output_x['pseudo_real_outputs'], output_x['pseudo_real_features'] = \
self._single_forward(preal_labels, preal_images, None)
return output_x
class FPSEDiscriminator(nn.Module):
def __init__(self,
num_input_channels,
num_labels,
num_filters,
kernel_size,
weight_norm_type,
activation_norm_type,
do_multiscale,
smooth_resample,
no_label_except_largest_scale):
super().__init__()
self.do_multiscale = do_multiscale
self.no_label_except_largest_scale = no_label_except_largest_scale
padding = int(np.ceil((kernel_size - 1.0) / 2))
nonlinearity = 'leakyrelu'
stride1_conv2d_block = \
functools.partial(Conv2dBlock,
kernel_size=kernel_size,
stride=1,
padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity=nonlinearity,
# inplace_nonlinearity=True,
order='CNA')
down_conv2d_block = \
functools.partial(Conv2dBlock,
kernel_size=kernel_size,
stride=2,
padding=padding,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity=nonlinearity,
# inplace_nonlinearity=True,
order='CNA')
latent_conv2d_block = \
functools.partial(Conv2dBlock,
kernel_size=1,
stride=1,
weight_norm_type=weight_norm_type,
activation_norm_type=activation_norm_type,
nonlinearity=nonlinearity,
# inplace_nonlinearity=True,
order='CNA')
# bottom-up pathway
self.enc1 = down_conv2d_block(num_input_channels, num_filters) # 3
self.enc2 = down_conv2d_block(1 * num_filters, 2 * num_filters) # 7
self.enc3 = down_conv2d_block(2 * num_filters, 4 * num_filters) # 15
self.enc4 = down_conv2d_block(4 * num_filters, 8 * num_filters) # 31
self.enc5 = down_conv2d_block(8 * num_filters, 8 * num_filters) # 63
# top-down pathway
# self.lat1 = latent_conv2d_block(num_filters, 2 * num_filters) # Zekun
self.lat2 = latent_conv2d_block(2 * num_filters, 4 * num_filters)
self.lat3 = latent_conv2d_block(4 * num_filters, 4 * num_filters)
self.lat4 = latent_conv2d_block(8 * num_filters, 4 * num_filters)
self.lat5 = latent_conv2d_block(8 * num_filters, 4 * num_filters)
# upsampling
self.upsample2x = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=False)
# final layers
self.final2 = stride1_conv2d_block(4 * num_filters, 2 * num_filters)
self.output = Conv2dBlock(num_filters * 2, num_labels+1, kernel_size=1)
if self.do_multiscale:
self.final3 = stride1_conv2d_block(4 * num_filters, 2 * num_filters)
self.final4 = stride1_conv2d_block(4 * num_filters, 2 * num_filters)
if self.no_label_except_largest_scale:
self.output3 = Conv2dBlock(num_filters * 2, 2, kernel_size=1)
self.output4 = Conv2dBlock(num_filters * 2, 2, kernel_size=1)
else:
self.output3 = Conv2dBlock(num_filters * 2, num_labels+1, kernel_size=1)
self.output4 = Conv2dBlock(num_filters * 2, num_labels+1, kernel_size=1)
self.interpolator = functools.partial(F.interpolate, mode='nearest')
if smooth_resample:
self.interpolator = self.smooth_interp
@staticmethod
def smooth_interp(x, size):
r"""Smooth interpolation of segmentation maps.
Args:
x (4D tensor): Segmentation maps.
size(2D list): Target size (H, W).
"""
x = F.interpolate(x, size=size, mode='area')
onehot_idx = torch.argmax(x, dim=-3, keepdims=True)
x.fill_(0.0)
x.scatter_(1, onehot_idx, 1.0)
return x
# Weights: [N C]
def forward(self, images, segmaps, weights=None):
# Assume images 256x256
# bottom-up pathway
feat11 = self.enc1(images) # 128
feat12 = self.enc2(feat11) # 64
feat13 = self.enc3(feat12) # 32
feat14 = self.enc4(feat13) # 16
feat15 = self.enc5(feat14) # 8
# top-down pathway and lateral connections
feat25 = self.lat5(feat15) # 8
feat24 = self.upsample2x(feat25) + self.lat4(feat14) # 16
feat23 = self.upsample2x(feat24) + self.lat3(feat13) # 32
feat22 = self.upsample2x(feat23) + self.lat2(feat12) # 64
# final prediction layers
feat32 = self.final2(feat22)
results = []
label_map = self.interpolator(segmaps, size=feat32.size()[2:])
pred2 = self.output(feat32) # N, num_labels+1, H//4, W//4
features = [feat11, feat12, feat13, feat14, feat15, feat25, feat24, feat23, feat22]
if weights is not None:
label_map = label_map * weights[..., None, None]
results.append({'pred': pred2, 'label': label_map})
if self.do_multiscale:
feat33 = self.final3(feat23)
pred3 = self.output3(feat33)
feat34 = self.final4(feat24)
pred4 = self.output4(feat34)
if self.no_label_except_largest_scale:
label_map3 = torch.ones([pred3.size(0), 1, pred3.size(2), pred3.size(3)], device=pred3.device)
label_map4 = torch.ones([pred4.size(0), 1, pred4.size(2), pred4.size(3)], device=pred4.device)
else:
label_map3 = self.interpolator(segmaps, size=pred3.size()[2:])
label_map4 = self.interpolator(segmaps, size=pred4.size()[2:])
if weights is not None:
label_map3 = label_map3 * weights[..., None, None]
label_map4 = label_map4 * weights[..., None, None]
results.append({'pred': pred3, 'label': label_map3})
results.append({'pred': pred4, 'label': label_map4})
return results, features
|